Management of Wilt Complex of Chickpea with Seed Biopriming and Soil Application of Trichoderma spp.

Author(s):  
H.V. Parmar ◽  
N.M. Gohel

Background: Chickpea wilt complex caused by several soil-borne pathogens is a serious biotic constraint for chickpea production.Methods: To find out the effective management of the disease through seed biopriming and soil application of biocontrol agents under in vivo and in vitro conditions experiments were carried out during rabi 2018-19 and 2019-20 at Anand Agricultural University, Anand, Gujarat.Result: Seed biopriming showed a positive impact producing vigorous plant shoot and root system, besides disease control during in vitro conditions. While under in vivo conditions, the pooled results of two years revealed that seed biopriming for 10 h with the suspension of talc-based formulation (2 x 108 CFU/g) of Trichoderma viride or T. asperellum @ 50 g in 250 ml of water/kg of seed followed by soil application of T. viride or T. asperellum enriched FYM (10g/kg FYM) @ 100 g/m2 of soil found significant for the disease management as well as higher yield. The seed biopriming alone control the disease in the range of 23-34% and increased the yield of chickpea by 23-29%. However, combined applications of seed biopriming as well as soil application significantly control the disease in the range of 51-70% and increased the grain yield by 41-51% over untreated control.

2010 ◽  
Vol 36 (1) ◽  
pp. 61-67 ◽  
Author(s):  
Marinês Pereira Bomfim ◽  
Abel Rebouças São José ◽  
Tiyoko Nair Hojo Rebouças ◽  
Saulo Sousa de Almeida ◽  
Ivan Vilas Boas Souza ◽  
...  

Para estudar a potencialidade antagônica de espécies de Trichoderma spp. in vitro e in vivo a Rhizopus stolonifer, patógeno causador da podridão floral do maracujazeiro, foram estudadas as espécies de Trichoderma viride, T. virens, T. harzianum e T. stromaticum. O crescimento micelial do fitopatógeno foi realizado pelo teste do pareamento de culturas, para crescimento individual foram utilizadas cinco temperaturas. Avaliou-se também o crescimento micelial em 24h e 48h, avaliando a taxa de crescimento dos isolados. Na produção de metabolitos voláteis e não voláteis foram utilizados papel celofane e sobreposição de placas. Em condição de campo os frutos/planta foram tratados com a suspensão na concentração de 2 x 10(8) Conídios/mL sendo avaliado o número médio de frutos aos 15 e 30. No pareamento de cultura todos os isolados de Trichoderma spp. apresentaram crescimento micelial, impedindo o desenvolvimento do fitopatógeno, para todos os isolados as temperaturas ideais de crescimento foram de 25ºC e 30ºC. Nos períodos de incubação de 24 e 48h, foram constatadas diferenças significativas no crescimento micelial entre os isolados os antagonistas apresentaram velocidade de crescimento maior que o fitopatógeno. Houve uma produção de metabólitos voláteis e não voláteis de ação antifúngica ao R. stolonifer. No ensaio em campo houve diferença significativa entre os tratamentos, verificando-se que o melhor resultado entre os antagonistas em estudo cujos percentuais de pegamento foram 74% para os tratamentos Trichoderma harzianum e T. virens, e os tratamentos T. viride e T. stromaticum obtiveram um porcentual de 75% enquanto a testemunha obteve um percentual de 42%.


2020 ◽  
Vol 55 (1) ◽  
pp. 27-34
Author(s):  
G. Zadehdabagh ◽  
K. Karimi ◽  
M. Rezabaigi ◽  
F. Ajamgard

The northern of Khuzestan province in Iran is mainly considered as one of the major areas of miniature rose production. Blossom blight caused by Botrytis cinerea has recently become a serious limiting factor in rose production in pre and post-harvest. In current study, an attempt was made to evaluate the inhibitory potential of some local Trichoderma spp. strains against B. cinerea under in vitro and in vivo conditions. The in vitro results showed that all Trichoderma spp. strains were significantly able to reduce the mycelial growth of the pathogen in dual culture, volatile and non-volatile compounds tests compared with control, with superiority of T. atroviride Tsafi than others. Under in vivo condition, the selected strain of T. atroviride Tsafi had much better performance than T. harzianum IRAN 523C in reduction of disease severity compared with the untreated control. Overall, the findings of this study showed that the application of Trichoderma-based biocontrol agents such as T. atroviride Tsafi can be effective to protect cut rose flowers against blossom blight.


Reproduction ◽  
2021 ◽  
Author(s):  
Marina Izvolskaia ◽  
Vasilina Ignatiuk ◽  
Ayshat Ismailova ◽  
Viktoria Sharova ◽  
Liudmila Zakharova

Sexual performance in adult male rats is highly sensitive to prenatal stress which can affect the functionality of the reproductive system and various brain structures involved in modulating sexual behavior. The immunomodulatory effect of mouse IgG on reproductive maturity in male offspring after LPS exposure in vivo and in vitro was studied. Prenatal IgG injection (20 µg / mouse) had a positive impact on the puberty of male mice whose mothers were exposed to LPS (100 µg / kg) on the 12th day of pregnancy. The number of Sertoli cells were increased, whereas the body weight and the number of symplastic spermatids were decreased in offspring as compared to LPS-treated animals. Besides, IgG had a positive effect on altered hormone levels: reduced estradiol level on the 5th and 14th postnatal days and increased testosterone level on the 30th postnatal day in blood that led to an increased number of mounting attempts in sexually mature males. The cAMP-dependent pathway may be involved in the regulation of the LPS-induced inflammation. IgG reduced the increased level of cAMP in mouse peritoneal macrophages activated by LPS in vitro. IgG is able to modulate inflammation processes, but its exposure time is important.


2014 ◽  
Vol 40 (2) ◽  
pp. 141-146 ◽  
Author(s):  
Zayame Vegette Pinto ◽  
Matheus Aparecido Pereira Cipriano ◽  
Amaury da Silva dos Santos ◽  
Ludwig Heinrich Pfenning ◽  
Flávia Rodrigues Alves Patrício

Bottom rot, caused by Rhizoctonia solani AG 1-IB, is an important disease affecting lettuce in Brazil, where its biological control with Trichoderma was not developed yet. The present study was carried out with the aim of selecting Trichoderma isolates to be used in the control of lettuce bottom rot. Forty-six Trichoderma isolates, obtained with baits containing mycelia of the pathogen, were evaluated in experiments carried out in vitro and in vivo in a greenhouse in two steps. In the laboratory, the isolates were evaluated for their capabilities of parasitizing and producing toxic metabolic substances that could inhibit the pathogen mycelial growth. In the first step of the in vivo experiments, the number and the dry weight of lettuce seedlings of the cultivar White Boston were evaluated. In the second step, 12 isolates that were efficient in the first step and showed rapid growth and abundant sporulation in the laboratory were tested for their capability of controlling bottom rot in two repeated experiments, and had their species identified. The majority of the isolates of Trichoderma spp. (76%) showed high capacity for parasitism and 50% of them produced toxic metabolites capable of inhibiting 60-100% of R. solani AG1-IB mycelial growth. Twenty-four isolates increased the number and 23 isolates increased the dry weight of lettuce seedlings inoculated with the pathogen in the first step of the in vivo experiments.In both experiments of the second step, two isolates of T. virens, IBLF 04 and IBLF 50, reduced the severity of bottom rot and increased the number and the dry weight of lettuce seedlings inoculated with R. solani AG1-IB. These isolates had shown a high capacity for parasitism and production of toxic metabolic substances, indicating that the in vitro and in vivo steps employed in the present study were efficient in selecting antagonists to be used for the control of lettuce bottom rot.


2017 ◽  
Vol 52 (12) ◽  
pp. 1140-1148 ◽  
Author(s):  
Patrícia Elias Haddad ◽  
Luis Garrigós Leite ◽  
Cleusa Maria Mantovanello Lucon ◽  
Ricardo Harakava

Abstract: The objective of this work was to evaluate, in vitro and in vivo, the potential of Trichoderma spp. strains to control Sclerotinia sclerotiorum in soybeans (Glycine max) and to perform the molecular identification of the best perfoming strains. The effect of 120 strains of Trichoderma spp. on the viability of S. sclerotiorum sclerotia was evaluated in vitro through immersion in suspension of conidia from the antagonists and plating in culture medium. The best performing strains were evaluated in vivo, in a greenhouse, for control of the pathogen inoculated on 'Pintado' soybean seeds and plants. Of the 120 strains tested in vitro, 22 strains of Trichoderma spp. caused 100% inhibition of sclerotia germination. In the greenhouse, five strains inhibited the negative effect of the pathogen on seed germination and two strains increased in up to 67% plant dry matter. The best performing strains were identified as T. koningiopsis (3 strains), T. asperelloides (3), T. atroviride (2), and T. virens (1). Trichoderma strains are able to protect soybean plants from the harmful effect of S. sclerotiorum and, at the same time, they can promote the growth of the aerial part in greenhouse conditions.


2010 ◽  
Vol 2 (3) ◽  
pp. 72-76 ◽  
Author(s):  
Bilal Ahmad PADDER ◽  
Prem Nath SHARMA ◽  
Renu KAPIL ◽  
Anju PATHANIA ◽  
Om Prakash SHARMA

Three bioagents (Trichoderma viride, T. harzianum and Gliocladium virens) and five biopesticides (Achook, Neemgold, Wannis, Spictaf and Neemazal) were evaluated under in vitro and in vivo conditions against Colletotrichum lindemuthianum. All the three antagonistic fungi caused significant inhibition of mycelial growth, maximum being with T. viride (69.21%) followed by T. harzianum (64.20%). Among the biopesticides tested at four concentrations, Wanis applied @ 1000 ?l/ml caused maximum inhibition of 82.12 per cent followed by Spictaf (52.85%). T. viride and Wanis @ 1000 ?l/ml were most effective in reducing the seed borne infection. Integration of bioagents with Bavistin showed that disease can be effectively managed with seed dressing either with Bavistin or biopesticide followed by foliar treatment with fungicide or biopesticide.


Author(s):  
H.V. Parmar ◽  
N.M. Gohel

Background: Chickpea wilt complex caused by several soil-borne pathogens is the major yield-reducing malady worldwide. Biological control is one of the best, low-cost and ecologically sustainable method for managing plant diseases caused by soil-borne pathogens. Methods: In this present investigation Panchagavya and Trichoderma spp. were evaluated by following poisoned food technique and dual culture technique against wilt complex causing pathogens i.e. Fusarium oxysporum f. sp. ciceri, Fusarium solani and Macrophomina phaseolina. Result: Among the different isolates of Trichoderma spp. evaluated, Trichoderma viride (AAU isolate) was highly antagonistic to F. oxysporum f. sp. ciceri (52.78%) and F. solani (65.37%) whereas, Trichoderma asperellum (AAU isolate) was highly antagonistic to M. phaseolina (65.93%). Panchagavya at the highest concentration (50%) showed significantly higher efficacy (80.74, 66.62 and 49.67%) in inhibiting the mycelial growth of all three pathogens and at the lowest concentration it was moderately effective.


Parasitology ◽  
2020 ◽  
Vol 147 (11) ◽  
pp. 1216-1228
Author(s):  
Cristina Fonseca-Berzal ◽  
Cristiane França da Silva ◽  
Denise da Gama Jaen Batista ◽  
Gabriel Melo de Oliveira ◽  
José Cumella ◽  
...  

AbstractIn previous studies, we have identified several families of 5-nitroindazole derivatives as promising antichagasic prototypes. Among them, 1-(2-aminoethyl)-2-benzyl-5-nitro-1,2-dihydro-3H-indazol-3-one, (hydrochloride) and 1-(2-acetoxyethyl)-2-benzyl-5-nitro-1,2-dihydro-3H-indazol-3-one (compounds 16 and 24, respectively) have recently shown outstanding activity in vitro over the drug-sensitive Trypanosoma cruzi CL strain (DTU TcVI). Here, we explored the activity of these derivatives against the moderately drug-resistant Y strain (DTU TcII), in vitro and in vivo. The outcomes confirmed their activity over replicative forms, showing IC50 values of 0.49 (16) and 5.75 μm (24) towards epimastigotes, 0.41 (16) and 1.17 μm (24) against intracellular amastigotes. These results, supported by the lack of toxicity on cardiac cells, led to better selectivities than benznidazole (BZ). Otherwise, they were not as active as BZ in vitro against the non-replicative form of the parasite, i.e. bloodstream trypomastigotes. In vivo, acute toxicity assays revealed the absence of toxic events when administered to mice. Moreover, different therapeutic schemes pointed to their capability for decreasing the parasitaemia of T. cruzi Y acute infected mice, reaching up to 60% of reduction at the peak day as monotherapy (16), 79.24 and 91.11% when 16 and 24 were co-administered with BZ. These combined therapies had also a positive impact over the mortality, yielding survivals of 83.33 and 66.67%, respectively, while untreated animals reached a cumulative mortality of 100%. These findings confirm the 5-nitroindazole scaffold as a putative prototype for developing novel drugs potentially applicable to the treatment of Chagas disease and introduce their suitability to act in combination with the reference drug.


Biomolecules ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 777 ◽  
Author(s):  
Javad Sharifi-Rad ◽  
Farzad Kobarfard ◽  
Athar Ata ◽  
Seyed Abdulmajid Ayatollahi ◽  
Nafiseh Khosravi-Dehaghi ◽  
...  

Members of the Prosopis genus are native to America, Africa and Asia, and have long been used in traditional medicine. The Prosopis species most commonly used for medicinal purposes are P. africana, P. alba, P. cineraria, P. farcta, P. glandulosa, P. juliflora, P. nigra, P. ruscifolia and P. spicigera, which are highly effective in asthma, birth/postpartum pains, callouses, conjunctivitis, diabetes, diarrhea, expectorant, fever, flu, lactation, liver infection, malaria, otitis, pains, pediculosis, rheumatism, scabies, skin inflammations, spasm, stomach ache, bladder and pancreas stone removal. Flour, syrup, and beverages from Prosopis pods have also been potentially used for foods and food supplement formulation in many regions of the world. In addition, various in vitro and in vivo studies have revealed interesting antiplasmodial, antipyretic, anti-inflammatory, antimicrobial, anticancer, antidiabetic and wound healing effects. The phytochemical composition of Prosopis plants, namely their content of C-glycosyl flavones (such as schaftoside, isoschaftoside, vicenin II, vitexin and isovitexin) has been increasingly correlated with the observed biological effects. Thus, given the literature reports, Prosopis plants have positive impact on the human diet and general health. In this sense, the present review provides an in-depth overview of the literature data regarding Prosopis plants’ chemical composition, pharmacological and food applications, covering from pre-clinical data to upcoming clinical studies.


2019 ◽  
Vol 7 (12) ◽  
pp. 679 ◽  
Author(s):  
Laurette Pinkerton ◽  
Mark Linton ◽  
Carmel Kelly ◽  
Patrick Ward ◽  
Gratiela Gradisteanu Pircalabioru ◽  
...  

Reducing acute mortality in aquatic crustaceans using natural alternatives to antibiotics has become a necessity, firstly for its positive impact on the aquaculture industry and, secondly, because the extensive use of antibiotics may lead to increased levels of drug resistance in pathogenic microorganisms. This study aimed to investigate the effect of a mixture of natural antimicrobials on the in vitro and in vivo virulence abilities of Type VI secretion system (T6SS)-positive Vibrio parahaemolyticus (A3 and D4), strains known as having potentially harmful health consequences for aquatic crustaceans and consumers. Herein, we report that a natural antimicrobial mixture (A3009) was capable of significantly reducing the virulence of V. parahaemolyticus strains A3 and D4 in an in vitro infection model, using the fish cell line CHSE-214, an effect which correlates with the bacterial downregulation of hcp1 and hcp2 gene expression and with the ability of the antimicrobial to efficiently retain low cytotoxic levels (p < 0.001). We show for the first time that a natural antimicrobial is able to significantly reduce the mortality of shrimps in a challenge experiment and is able to significantly attenuate H2O2 release during infection (p < 0.001), indicating that it could harbor positive intestinal redox balance effects.


Sign in / Sign up

Export Citation Format

Share Document