Biochemical responses of sainfoin shoot and root tissues to drought stress in In vitro Culture

Author(s):  
Ramazan Beyaz

This study was conducted to investigate the biochemical responses of the shoot and root tissues of sainfoin to drought stress under in vitro conditions. Seeds of sainfoin were cultured on MS (Murashige and Skoog) medium with addition of concentrations of PEG-6000 (50, 100, and 150 g/l). Biochemical analyzes (CAT, SOD, GR, and APX enzyme activity; proline, malondialdehyde (MDA) and chlorophyll contents) were carried out on the 35-day-old seedlings. The principal results of the study were that CAT and SOD antioxidant enzymes seemed to play a critical role in oxidative stress in both tissues of sainfoin seedlings. On the other hand, a significant decrease in GR activity and no change in APX activity detected in both tissues under stress. The contents of proline and MDA increased in both tissues while the chlorophyll contents decreased in the shoot tissue. Antioxidant enzyme activities seemed to be more active in the root tissue than the shoot tissue. Accumulation of proline was higher in the root tissue, while the MDA content was higher in the shoot tissue of the seedlings.

Author(s):  
Ramazan Beyaz

Background: Shoots and roots are autotrophic and heterotrophic organs of plants with different physiological and biochemical functions under stress conditions. The metabolites involved in tolerance enhancement differed between roots and shoots. In this study, the biochemical changes occurring in shoot and root organs under salt stress and the level of these changes were investigated. However, these changes in shoot and root organs were compared.Methods: Seeds of common vetch were sown and subjected to 14 days of salt stress in basal MS medium containing 100 mM NaCl. In shoot and root tissue, biochemical parameters such as antioxidant enzymes activities (GR, APX, SOD and CAT), malondialdehyde (MDA) content and proline accumulation were determined.Result: Results of the study indicated that the activities of antioxidant enzymes (SOD, CAT (except in shoot), GR and APX), MDA and proline accumulation enhanced by salt stress in both organs. On the other hand, morphological parameters decreased in both tissues. It seemed that antioxidant enzyme activities more active in root tissues. However, proline accumulation was found higher in shoot tissues than root tissue, while MDA content was higher in root tissue than shoot tissue. The present investigation provides essential information for the antioxidant components of the shoot and root organs of vetch seedlings under salt stress.


2020 ◽  
Vol 45 (2) ◽  
Author(s):  
Ramazan Beyaz ◽  
Hakan Kır

AbstractObjectiveThis study was conducted to analyze the physio-biochemical responses of two sorghum-sudangrass (Sorghum bicolor × Sorghum Sudanese Stapf.) hybrid (“Aneto” and “Sugar Graze”) seedlings exposed to salt stress.Materials and methodsSorghum-sudangrass hybrid seeds sown in MS medium containing 50 and 100 mM NaCl. The activity of antioxidant enzymes (SOD, CAT, GR, APX), chlorophyll (a, b, and total), malondialdehyde (MDA), and proline levels measured in 14 days old seedlings.ResultsAs a result of the study, the activity of antioxidant enzymes (CAT, SOD, APX, and GR), malondialdehyde (MDA), proline and chlorophyll contents of seedlings of cv. “Aneto” increased. On the other hand, SOD activity, proline, and chlorophyll content increased while CAT, APX, GR activity, and malondialdehyde (MDA) content decreased in seedlings of cv. “Sugar graze”.ConclusionOverall, the results showed that the cv. “Aneto” was less affected by the adverse effects of salt stress than the cv. “Sugar graze”. This study is essential for revealing biochemical responses of 14 days old Sorghum-Sudanese hybrid seedlings against salt stress. These study findings can use in breeding programs for sorghum plants.


Author(s):  
Ramazan Beyaz

Sainfoin (Fabaceae) is one of the most critical animal forage crops. However, the tolerance of sainfoin is low against to salinity. This study aims to investigate biochemical responses of the shoot and root tissue of sainfoin seedlings to moderate salt stress under in vitro conditions. For this aim, the seed of sainfoin were sown MS medium containing 100 mM NaCl. Antioxidant enzymes (CAT, SOD, APX, and GR), proline and malondialdehyde (MDA) contents were measured in shoot and root tissue of 35-day-old seedlings of sainfoin. A significantly higher constitutive catalase (CAT) and superoxide dismutase (SOD) activity was observed in shoot tissues when compared to root tissues. Overall, salt stress caused significant more enhancement in the activity of antioxidant enzymes (CAT, SOD, APX, and GR) in shoot tissues than root tissue. On the other hand, among the antioxidant enzymes, SOD seems to be more active in both tissues of sainfoin. Interestingly, the activity of GR reduced in both tissue under salt stress. The content of proline and MDA has been increased under salt stress and this increase has been more in the root tissue. This study has revealed biochemical responses to salt stress in different organs of sainfoin.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Karama Zouari Bouassida ◽  
Samar Makni ◽  
Amina Tounsi ◽  
Lobna Jlaiel ◽  
Mohamed Trigui ◽  
...  

Juniperus phoenicea (J. phoenicea) is a wild tree belonging to the Cupressaceae family, commonly used for the treatment of several disorders. This study aimed to evaluate the potential protective effects of J. phoenicea hydroethanolic extract (EtOH-H2OE) against oxidation, acute inflammation, and pain in mice models. For the purpose, chemical compounds of J. phoenicea EtOH-H2OE were also analyzed by GC-MS. The J. phoenicea EtOH-H2OE showed a potent antioxidant activity in vitro, thanks to its richness in phenolic and flavonoid compounds. Mice treated with EtOH-H2OE (100 mg/kg BW) showed reduced paw oedema formation and decreased malondialdehyde (MDA) content. The evaluation of antioxidant enzyme activities in paw oedema tissue after five hours of carrageenan induction showed a significant increase (P<0.05). Inflammatory biomarkers explorations of J. phoenicea EtOH-H2OE-treated mice showed a restoration of the studied parameters to near-normal values. Furthermore, EtOH-H2OE of J. phoenicea produced a significant reduction of the number of abdominal writhes (P<0.05) in a dose-dependent way. Phytochemical analysis of the J. phoenicea EtOH-H2OE by GC-MS showed the presence of hexadecanoic and stearic acids known as anti-inflammatory and analgesic compounds. Our investigation provided evidence that J. phoenicea EtOH-H2OE can effectively reduce the inflammation and pain in mice models.


ISRN Agronomy ◽  
2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Aman Verma ◽  
C. P. Malik ◽  
V. K. Gupta

This paper deals with the in vitro effects of brassinosteroids (BRs) on growth in the form of multiple shoots, chlorophyll content, Hill reaction activity (HRA), activities of catalase (CAT), peroxidase (POX), polyphenol oxidase (PPX), and ascorbate peroxidase (APX) in Arachis hypogaea L. genotypes (M-13 and PBS24030). In vitro impact of BR on shoot multiplication potential was found to be the best at 1 mL L−1 with BA (3 mg L−1) in both the cultivars. Flowering was observed in PBS24030 on the medium containing 2.0 mL L−1 BR with 3 mg L−1 BA. Rhizogenesis was noticed in the presence of BR alone. Total chlorophyll content and HRA were highest at 2.0 mL L−1 with BA in M-13 and 1.0 mL L−1 with BA in PBS24030. Antioxidant enzyme activities were increased in the presence of BR whether alone or in combination with BA in both the cultivars. However, progressive decline was observed in case of MDA content. The results obtained in the study clearly indicated not only the in vitro establishment of groundnut cultivars in the presence of BR alone and in combination with BA but also its effect on various growth promotory physiological parameters.


1995 ◽  
Vol 41 (8) ◽  
pp. 707-713 ◽  
Author(s):  
M. Shishido ◽  
B. M. Loeb ◽  
C. P. Chanway

Root colonization and in vitro carbon substrate utilization by two seedling growth-promoting Bacillus strains that originated from different root microsites were studied in greenhouse and growth chamber experiments. Strain L6, identified as Bacillus polymyxa, was previously isolated from rhizosphere soil containing roots of pasture plants, and Pw-2, tentatively identified also as B. polymyxa, was isolated from within surface-sterilized lodgepole pine (Pinus contorta var. latifolia (Dougl.) Engelm.) roots. Rifamycin-resistant strains derived spontaneously from wild-type strains L6 and Pw-2, designated strain L6-16R and Pw-2R, respectively, were used to monitor lodgepole pine root colonization in a closed tube assay system. Three-week-old pine seedlings were inoculated with 105 colony-forming units (cfu) of strain Pw-2R or 106 cfu of strain L6-16R, and external and internal root colonization was assessed 2 and 4 weeks later. Strains L6-16R and Pw-2R were both recovered from pine rhizosphere samples with > 5 × 107 cfu/g fresh root tissue 2 weeks after inoculation, but neither strain was detected in the root interior. When root colonization was assessed 4 weeks after inoculation, the rhizosphere populations of both strains had declined slightly to between 5 × 106 and 5 × 107 cfu/g fresh root tissue, but strain Pw-2R was also detected within root tissues with 105 cfu/g fresh root tissue. Lateral root formation was abundant 4 weeks after inoculation and may have facilitated colonization of internal root tissues by strain Pw-2R. Both strains possessed pectolytic activity, although differences between the strains were detected in in vitro substrate utilization capabilities using BIOLOG assays. These differences may be related to their abilities to colonize internal root tissues. On the basis of our results, we hypothesize that internal root colonization by Bacillus strains is not a random event and that root-endophytic Bacillus strains possess specific physiological and (or) biochemical characteristics that facilitate colonization of internal root tissues.Key words: Bacillus, PGPR, rhizosphere, endophytes, colonization.


2018 ◽  
Vol 47 (2) ◽  
pp. 352-358 ◽  
Author(s):  
Sevinç KIRAN

Vermicompost can play an effective and important role in plant growth and development and also in reducing harmful effects of various environmental stresses on plants. The vermicompost fertilizer application was evaluated for the growth, physiological and biochemical parameters of lettuce (Lactuca sativa var. crispa) plants under drought stress conditions. Tests were carried out at different levels of vermicompost (0, 2.5 and 5%) and drought stress [no stress, moderate drought, and severe drought at 100, 50 and 25% of field capacity]. In comparison to control (vermicompost at 0%), lettuce plants treated with vermicompost at 2.5 or 5%  had higher shoot height, shoot fresh weight, relative water content, stomatal conductance, chlorophyll a, chlorophyll b , total chlorophyll and carotenoid contents under moderate and severe drought stress conditions. Malondialdehyde (MDA) content and superoxide dismutase (SOD) and catalase (CAT) activities increased while plants under drought stress conditions. Application of vermicompost caused higher SOD and CAT enzyme activities and lower MDA content under drought stress. Enhancement in antioxidant enzyme activities as a result of vermicompost destroyed reactive oxygen species. Therefore, application of vermicompost under moderate and severe drought stress decreased MDA content in lettuce plant cells. Data indicated a positive effect of the vermicompost on the growth of lettuce under drought stress conditions.


2010 ◽  
Vol 59 (1-6) ◽  
pp. 124-136 ◽  
Author(s):  
Azamal Husen

Summary Four-year old clones (FG1 and FG11) of teak (Tectona grandis Linn. f.), differing in rejuvenation capacity were grown in glazed earthenware pots. Drought treatments were imposed by withholding water for 20 days and rewatered to the field capacity daily for 5 days and the possible role of biochemical alteration and antioxidant metabolism in conferring photosynthetic capacity was determine by measuring photosynthetic traits, cellular damage and assaying activities of the superoxide dismutase (SOD) and peroxidase (PER) enzymes. Growth, relative water content (RWC), net photosynthetic rate (Pn), stomatal conductance (gs), chlorophyll fluorescence (Fv/Fm) and chlorophyll a, b, total chlorophyll and soluble protein content decreased significantly with increasing drought treatments from 5 to 20 days. Droughtinduced stress significantly increased the carotenoids content, relative electrolyte leakage and malondialdehyde (MDA) content, and, at the same time, accumulated free proline, free amino acid and soluble sugars in both clones. After re-watered to the field capacity daily for 5 days, both clones were shown significant recovery in the studied parameters. As compared with the FG11, the FG1 clone was more tolerant to drought as indicated by higher level of antioxidant enzyme activities as well as lower MDA content and electrolyte leakage. Similarly, drought stress caused less pronounced inhibition of Pn in FG1 than in FG11 clone. After re-hydration, the recovery was relatively quicker in FG1 than in FG11 clone. FG1 clone showed significant recovery in maximum quantum yield or photochemical efficiency of PSII (Fv/Fm) after 5 days of re-watering. The FG11 compared to the FG1, the former clone was less tolerant to drought than the latter. These results demonstrated that the different physiological strategies including antioxidative enzymes employed by the FG1 and FG11 clones of T. grandis to protect photosynthetic apparatus and alleviate drought stress. Furthermore, this study also provides ideas for teak improvement programmes and may be useful in breeding or genetic engineering for their tolerance to drought stress.


1995 ◽  
Vol 73 (03) ◽  
pp. 349-355 ◽  
Author(s):  
Pierre Toulon ◽  
Elyane Frere ◽  
Claude Bachmeyer ◽  
Nathalie Candia ◽  
Philippe Blanche ◽  
...  

SummaryThrombin clotting time (TCT) and reptilase clotting time (RCT) were found significantly prolonged in a series of 72 HIV-infected patients drawn for routine coagulation testing. Both TCT and RCT were highly significantly correlated with albumin (r = -0.64, and r = -0.73 respectively, p<0.0001). TCT and RCT were significantly higher (p<0.0001) in a series of 30 other HIV-infected patients selected on their albumin level below 30.0 g/l (group l) than in 30 HIV-infected patients with albumin level above 40.0 g/l or in 30 HIV-negative controls; the two latter groups were not different. In vitro supplementation of plasma from group 1 patients with purified human albumin up to 45.0 g/l (final concentration) lead to a dramatic shortening effect on both TCT and RCT, which reached normal values. The TCT and RCT of the purified fibrinogen solutions (2.0 g/l final concentration) were not different in the three groups, and normal polymerization curves were obtained in all cases. This further ruled out the presence of any dysfibrinogenemia in the plasma from group 1 patients. Using purified proteins, highly significant correlations were demonstrated between the albumin concentration and the prolongations of both TCT and RCT, which were of the same magnitude order than those found in the patients plasma. These results suggest that hypo-albuminemia is responsible for the acquired fibrin polymerization defect reported in HIV-infected patients. The pathophysiological implication of the low albumin levels was suggested by the finding of decreased albumin levels (associated with prolonged TCT and RCT) in a small series of the eight HIV-infected patients who developed thrombotic complications.


2011 ◽  
Vol 50 (06) ◽  
pp. 234-239 ◽  
Author(s):  
R. Guo ◽  
Y. Ma ◽  
R. Zhang ◽  
S. Liang ◽  
H. Shen ◽  
...  

Summary Aim: Angiogenesis plays a critical role in tumour formation and metastasis. Suitable radiolabeled angiogenesis inhibitor can be used for noninvasive imaging of angiogenesis and radionuclide therapy. Here we prepare rhenium-188 labeled recombinant human plasminogen kringle5 (188Re-rhk5) in a convenient manner than evaluate its properties in A549 lung adenocarcinoma. Methods: 188Rerhk5 was obtained by conjugating His group at the C end of rhk5 with fac- [188Re(H2O)3(CO)3]+. Chelating efficiency of fac-[188Re(H2O)3(CO)3]+ and radiolabeling efficiency of 188Re-rhk5 were measured by radio thin-layer chromatography (RTLC). In vitro stability of 188Re-rhk5 was determined in human serum at 37°C and analyzed by RTLC. Competition test was also performed to verify the specificity of binding. A biodistribution study was carried out in nude mice bearing A549 lung adenocarcinoma. Results: 188Rerhk5 was obtained with a radiolabel efficiency of 66.1%, the radiochemical purity (RCP) can marreach 95.2% after purification. 188Re-rhk5 showed high stability in human serum, the RCP was more than 80% even 12 h after incubation. Competition test showed a high binding specificity. Furthermore, this radio-complex was excreted mainly through kidneys and showed specific tumour uptake in mice bearing A549 tumours. Conclusion: 188Re-rhk5 was prepared by a simple method. Preliminary biodistribution results showed its potential as an agent for possible tumour imaging, therapy and encouraged further investigation.


Sign in / Sign up

Export Citation Format

Share Document