A Network Architecture using Super Base Station for Communication in Energy-Efficient Fifth-Generation Mobile Systems

Author(s):  
A.K Parvathi ◽  
2020 ◽  
pp. 6-10
Author(s):  
Arulanantham D ◽  
Pradeepkumar G ◽  
Palanisamy C ◽  
Dineshkumar Ponnusamy

The Internet of Things (IoT) is an establishment with sensors, base station, gateway, and network servers. IoT is an efficient and intellectual system that minimizes human exertion as well as right to use to real devices. This method also has an autonomous control property by which any device can control without any human collaboration. IoT-based automation has become very reasonable and it has been applied in several sectors such as manufacturing, transport, health care, consumer electronics, etc. In WSN’s smaller energy consumption sensors are expected to run independently for long phases. So much ongoing researches on implementing routing protocols for IoTbased WSNs.Energy consciousness is an essential part of IoT based WSN design issue. Minimalizing Energy consumption is well-thought-out as one of the key principles in the Expansion of routing protocols for the Internet of things. In this paper, we propose a Location based Energy efficient path routing for Internet of things and its applications its sensor position and clustering based finding the shortest path and real time implementation of Arduino based wireless sensor network architecture with the ESP8266 module. Finally, analyze the principles of Location-based energy-efficient routing and performance of QoS parameters, and then implemented automatic gas leakage detection and managing system.


Author(s):  
Kanchana Devi A ◽  
Bhuvaneswari B

Massive MIMO is a advance of MIMO technology. M-MIMO use hundreds of Base station (BS) to simultaneously serve multiple users. It combines with millimeter wave (mmWave) to provide huge spectral efficient, high reliability and high energy efficiency. Massive MIMO gives huge antennas, high signal strength, less noise reduction and also using better channel model. This paper discusses the detail description of fifth generation (5G) network architecture and to improve massive MIMO in existing technology.


2014 ◽  
Vol 1049-1050 ◽  
pp. 2063-2068
Author(s):  
Xiao Tian Wang ◽  
Long Xiang Yang

massive MIMO (also known as Large-Scale Antenna Systems),which is one of the key technologies for the fifth generation (5G) mobile systems, brings huge improvements in spectral efficiency and energy efficiency through the use of a large excess of antennas for base station. This paper analyses and simulates the performances of several signal detection algorithms under the massive MIMO system model. The results show that when the number of base station antennas is considerably larger than the number of users, even the simple signal detection algorithms can achieve good system performance.


Electronics ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 173
Author(s):  
Andrei Vladyko ◽  
Vasiliy Elagin ◽  
Anastasia Spirkina ◽  
Ammar Muthanna ◽  
Abdelhamied A. Ateya

Vehicular communication is a promising technology that has been announced as a main use-case of the fifth-generation cellular system (5G). Vehicle-to-everything (V2X) is the vehicular communication paradigm that enables the communications and interactions between vehicles and other network entities, e.g., road-side units (RSUs). This promising technology faces many challenges related to reliability, availability and security of the exchanged data. To this end, this work aims to solve the scientific problem of building a vehicular network architecture for reliable delivery of correct and uncompromised data within the V2X concept to improve the safety of road users, using blockchain technology and mobile edge computing (MEC). The proposed work provides a formalized mathematical model of the system, taking into account the interconnection of objects and V2X information channels and an energy-efficient offloading algorithm to manage traffic offloading to the MEC server. The main applications of the blockchain and MEC technology in the developed system are discussed. Furthermore, the developed system, with the introduced sub-systems and algorithms, was evaluated over a reliable environment, for different simulation scenarios, and the obtained results are discussed.


Author(s):  
Yugashree Bhadane ◽  
Pooja Kadam

Now days, wireless technology is one of the center of attention for users and researchers. Wireless network is a network having large number of sensor nodes and hence called as “Wireless Sensor Network (WSN)”. WSN monitors and senses the environment of targeted area. The sensor nodes in WSN transmit data to the base station depending on the application. These sensor nodes communicate with each other and routing is selected on the basis of routing protocols which are application specific. Based on network structure, routing protocols in WSN can be divided into two categories: flat routing, hierarchical or cluster based routing, location based routing. Out of these, hierarchical or cluster based routing is becoming an active branch of routing technology in WSN. To allow base station to receive unaltered or original data, routing protocol should be energy-efficient and secure. To fulfill this, Hierarchical or Cluster base routing protocol for WSN is the most energy-efficient among other routing protocols. Hence, in this paper, we present a survey on different hierarchical clustered routing techniques for WSN. We also present the key management schemes to provide security in WSN. Further we study and compare secure hierarchical routing protocols based on various criteria.


2019 ◽  
Author(s):  
Rajavelsamy R ◽  
Debabrata Das

5G promises to support new level of use cases that will deliver a better user experience. The 3rd Generation Partnership Project (3GPP) [1] defined 5G system introduced fundamental changes on top of its former cellular systems in several design areas, including security. Unlike in the legacy systems, the 5G architecture design considers Home control enhancements for roaming customer, tight collaboration with the 3rd Party Application servers, Unified Authentication framework to accommodate various category of devices and services, enhanced user privacy, and secured the new service based core network architecture. Further, 3GPP is investigating the enhancements to the 5G security aspects to support longer security key lengths, False Base station detection and wireless backhaul in the Phase-2 of 5G standardization [2]. This paper provides the key enhancements specified by the 3GPP for 5G system, particularly the differences to the 4G system and the rationale behind the decisions.


Author(s):  
Hardeep S. Saini ◽  
Dinesh Arora

Background & Objective: The operating efficiency of a sensor network totally relies upon the energy that is consumed by the nodes to perform various tasks like data transmission etc. Thus, it becomes mandatory to consume the energy in an intelligent way so that the network can run for a long period. This paper proposed an energy efficient Cluster Head (CH) selection mechanism by considering the distance to Base Station (BS), distance to node and energy as major factors. The concept of volunteer node is also introduced with an objective to reduce the energy consumption of the CH to transmit data from source to BS. The role of the volunteer node is to transmit the data successfully from source to destination or BS. Conclusion: The results are observed with respect to the Alive nodes, dead nodes and energy consumption of the network. The outcome of the proposed work proves that it outperforms the traditional mechanisms.


2020 ◽  
Vol 13 (2) ◽  
pp. 168-172
Author(s):  
Ravi Kumar Poluru ◽  
M. Praveen Kumar Reddy ◽  
Syed Muzamil Basha ◽  
Rizwan Patan ◽  
Suresh Kallam

Background:Recently Wireless Sensor Network (WSN) is a composed of a full number of arbitrarily dispensed energy-constrained sensor nodes. The sensor nodes help in sensing the data and then it will transmit it to sink. The Base station will produce a significant amount of energy while accessing the sensing data and transmitting data. High energy is required to move towards base station when sensing and transmitting data. WSN possesses significant challenges like saving energy and extending network lifetime. In WSN the most research goals in routing protocols such as robustness, energy efficiency, high reliability, network lifetime, fault tolerance, deployment of nodes and latency. Most of the routing protocols are based upon clustering has been proposed using heterogeneity. For optimizing energy consumption in WSN, a vital technique referred to as clustering.Methods:To improve the lifetime of network and stability we have proposed an Enhanced Adaptive Distributed Energy-Efficient Clustering (EADEEC).Results:In simulation results describes the protocol performs better regarding network lifetime and packet delivery capacity compared to EEDEC and DEEC algorithm. Stability period and network lifetime are improved in EADEEC compare to DEEC and EDEEC.Conclusion:The EADEEC is overall Lifetime of a cluster is improved to perform the network operation: Data transfer, Node Lifetime and stability period of the cluster. EADEEC protocol evidently tells that it improved the throughput, extended the lifetime of network, longevity, and stability compared with DEEC and EDEEC.


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4368
Author(s):  
Jitander Kumar Pabani ◽  
Miguel-Ángel Luque-Nieto ◽  
Waheeduddin Hyder ◽  
Pablo Otero

Underwater Wireless Sensor Networks (UWSNs) are subjected to a multitude of real-life challenges. Maintaining adequate power consumption is one of the critical ones, for obvious reasons. This includes proper energy consumption due to nodes close to and far from the sink node (gateway), which affect the overall energy efficiency of the system. These wireless sensors gather and route the data to the onshore base station through the gateway at the sea surface. However, finding an optimum and efficient path from the source node to the gateway is a challenging task. The common reasons for the loss of energy in existing routing protocols for underwater are (1) a node shut down due to battery drainage, (2) packet loss or packet collision which causes re-transmission and hence affects the performance of the system, and (3) inappropriate selection of sensor node for forwarding data. To address these issues, an energy efficient packet forwarding scheme using fuzzy logic is proposed in this work. The proposed protocol uses three metrics: number of hops to reach the gateway node, number of neighbors (in the transmission range of a node) and the distance (or its equivalent received signal strength indicator, RSSI) in a 3D UWSN architecture. In addition, the performance of the system is also tested with adaptive and non-adaptive transmission ranges and scalable number of nodes to see the impact on energy consumption and number of hops. Simulation results show that the proposed protocol performs better than other existing techniques or in terms of parameters used in this scheme.


Sign in / Sign up

Export Citation Format

Share Document