scholarly journals Caractérisation Des Boues De Sucrerie Et Des Argiles Pour La Neutralisation Des Résidus Miniers Acides De La Mine De Kettara (Jebilet Centrales, Maroc)

2016 ◽  
Vol 12 (15) ◽  
pp. 321 ◽  
Author(s):  
Youssef Zerhouni ◽  
Saida Alikouss ◽  
Najib Saber ◽  
Samiha Nfissi ◽  
Ghalem Zahour ◽  
...  

The minerals in the tailings, subject to the action of water and atmospheric oxygen, can generate Acid Mine Drainage (AMD). The latter is considered the most important environmental issue facing the mining industry. Its environmental impacts include the destruction of the flora and fauna in infected rivers and contamination of groundwater. The abandoned mine site Kettara, located about 32 km northwest of Marrakech (Morocco), chosen as a pilot site for this study, more than 3 million tons of tailings stored at ground level without any concern for their environmental consequences. These solid residues, with high concentrations of heavy metals (As, Pb, Fe, Cu ...), produce leachate very acidic (pH <2.9) may contaminate the water resources of the region. To mitigate the DMA phenomenon in this mining site, different protocols have been proposed using candy sludge (Mud Pulp Sweets: MPS), rich in carbonates from the Moroccan Sugar Company Unit (COSUMAR) and red clays (Clays: CLY) of the city of Safi. Physicochemical characterization and mineralogical of these two materials was performed an provided promising results regarding the effectiveness of the use of alkaline materials in the stabilization of tailings Kettara. Indeed, these starting materials are provided with a net neutralizing power which is of the order of 878.5 kg CaCO3 / t for MPS and 299 kg CaCO3 / t for CLY. The valuation of MPS and CLY, as a main component of an alkaline amendment, is likely to significantly reduce the effects of DMA in this semiarid climate mine.

Minerals ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 378 ◽  
Author(s):  
Marcela Martínez ◽  
Yanett Leyton ◽  
Luis Cisternas ◽  
Carlos Riquelme

The environmental problems generated by waste from the mining industry in the mineral extraction for business purposes are known worldwide. The aim of this work is to evaluate the microalga Muriellopsis sp. as a potential remover of metallic ions such as copper (Cu2+), zinc (Zn2+) and iron (Fe2+), pollutants of acid mine drainage (AMD) type waters. For this, the removal of these ions was verified in artificial acid waters with high concentrations of the ions under examination. Furthermore, the removal was evaluated in waters obtained from areas contaminated by mining waste. The results showed that Muriellopsis sp. removed metals in waters with high concentrations after 4–12 h and showed tolerance to pH between 3 and 5. These results allow proposing this species as a potential bioremediator for areas contaminated by mining activity. In this work, some potential alternatives for application in damaged areas are proposed as a decontamination plan and future prevention.


Minerals ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 596 ◽  
Author(s):  
Alex Kalonji-Kabambi ◽  
Bruno Bussière ◽  
Isabelle Demers

The production of solid mine wastes is an integral part of the extraction and metallurgical processing of ores. The reclamation of highly reactive mine waste, with low neutralizing potential, is still a significant challenge for the mining industry, particularly when natural soils are not available close to the site. Some solid mine wastes present interesting hydro-geotechnical properties which can be taken advantage of, particularly for being used in reclamation covers to control acid mine drainage. The main objective of this research was to evaluate the use of mining materials (i.e., tailings and waste rock) in a cover with capillary barrier effects (CCBE) to prevent acid mine drainage (AMD) from highly reactive tailings. The first part of the project reproduced in this article involves context and laboratory validation of mining materials as suitable for a CCBE, while the companion paper reports laboratory and field results of cover systems made with mining materials. The main conclusions of the Part 1 of this study were that the materials studied (low sulfide tailings and waste rocks) had the appropriate geochemical and hydrogeological properties for use as cover materials in a CCBE. Results also showed that the cover mining materials are not acid-generating and that the LaRonde tailings are highly reactive with pH close to 2, with high concentrations of metals and sulfates.


2015 ◽  
Vol 14 (1) ◽  
pp. 87-95
Author(s):  
Jana Jenčárová ◽  
Alena Luptáková

Abstract Mine drainage waters are often characterized by high concentrations of sulphates and metals as a consequence of the mining industry of sulphide minerals. The aims of this work are to prove some biological-chemical processes utilization for the mine drainage water treatment. The studied principles of contamination elimination from these waters include sulphate reduction and metal bioprecipitation by the application of sulphate-reducing bacteria (SRB). Other studied process was metal sorption by prepared biogenic sorbent. Mine drainage waters from Slovak localities Banská Štiavnica and Smolník were used to the pollution removal examination. In Banská Štiavnica water, sulphates decreased below the legislative limit. The elimination of zinc by sorption experiments achieved 84 % and 65 %, respectively.


1993 ◽  
Vol 27 (7-8) ◽  
pp. 223-233 ◽  
Author(s):  
R. Stevens ◽  
J. Pinto ◽  
Y. Mamane ◽  
J. Ondov ◽  
M. Abdulraheem ◽  
...  

After the Iraqi retreat from Kuwait in 1991, airborne sampling was conducted in the oil fire plumes near Kuwait City and ground-level samples were taken of the air within the city. For the airborne sampling, a versatile air pollution sampler was used to determine the SO2, elemental concentrations, the aerosol mass loadings and SO42− and NO3 concentrations. Striking differences between the black and white plumes were associated with high concentrations of NaCl and CaCI2 measured in the white plumes and large numbers of carbon chain agglomerates in the black plumes. For the ground-based measurements, an annular denuder system was used to determine levels of SO2, SO42−, trace elements, and mass loadings. Certain pollutant levels rose in the city during inversion conditions, when winds were too weak to continue moving the combustion products directly to the Persian Gulf, and the increased levels of Pb and certain trace elements were comparable to those in other large urban areas in Europe. This paper has been reviewed in accordance with the U.S. Environmental Protection Agency's peer and administrative review policies and approved for presentation and publication. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.


Atmosphere ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 62
Author(s):  
Robert Cichowicz ◽  
Maciej Dobrzański

Spatial analysis of the distribution of particulate matter PM10, PM2.5, PM1.0, and hydrogen sulfide (H2S) gas pollution was performed in the area around a university library building. The reasons for the subject matter were reports related to the perceptible odor characteristic of hydrogen sulfide and a general poor assessment of air quality by employees and students. Due to the area of analysis, it was decided to perform measurements at two heights, 10 m and 20 m above ground level, using measuring equipment attached to a DJI Matrice 600 unmanned aerial vehicle (UAV). The aim of the measurements was air quality assessment and investigate the convergence of the theory of air flow around the building with the spatial distribution of air pollutants. Considerable differences of up to 63% were observed in the concentrations of pollutants measured around the building, especially between opposite sides, depending on the direction of the wind. To explain these differences, the theory of aerodynamics was applied to visualize the probable airflow in the direction of the wind. A strong convergence was observed between the aerodynamic model and the spatial distribution of pollutants. This was evidenced by the high concentrations of dust in the areas of strong turbulence at the edges of the building and on the leeward side. The accumulation of pollutants was also clearly noticeable in these locations. A high concentration of H2S was recorded around the library building on the side of the car park. On the other hand, the air turbulence around the building dispersed the gas pollution, causing the concentration of H2S to drop on the leeward side. It was confirmed that in some analyzed areas the permissible concentration of H2S was exceeded.


2021 ◽  
Vol 11 (14) ◽  
pp. 6592
Author(s):  
Ana Moldovan ◽  
Maria-Alexandra Hoaghia ◽  
Anamaria Iulia Török ◽  
Marius Roman ◽  
Ionut Cornel Mirea ◽  
...  

This study aims to investigate the quality and vulnerability of surface water (Aries River catchment) in order to identify the impact of past mining activities. For this purpose, the pollution and water quality indices, Piper and Durov plots, as well vulnerability modeling maps were used. The obtained results indicate that the water samples were contaminated with As, Fe, Mn, Pb and have relatively high concentrations of SO42−, HCO3−, TDS, Ca, K, Mg and high values for the electrical conductivity. Possible sources of the high content of chemicals could be the natural processes or the inputs of the mine drainage. Generally, according to the pollution indices, which were correlated to high concentrations of heavy metals, especially with Pb, Fe and Mn, the water samples were characterized by heavy metals pollution. The water quality index classified the studied water samples into five different classes of quality, namely: unsuitable for drinking, poor, medium, good and excellent quality. Similarly, medium, high and very high vulnerability classes were observed. The Durov and Piper plots classified the waters into Mg-HCO3− and Ca-Cl− types. The past and present mining activities clearly change the water chemistry and alter the quality of the Aries River, with the water requiring specific treatments before use.


Extremophiles ◽  
2021 ◽  
Author(s):  
Giacomo Fais ◽  
Veronica Malavasi ◽  
Paola Scano ◽  
Santina Soru ◽  
Pierluigi Caboni ◽  
...  

AbstractWith an unsupervised GC–MS metabolomics approach, polar metabolite changes of the microalgae Coccomyxa melkonianii SCCA 048 grown under standard conditions for seven weeks were studied. C. melkonianii was sampled at the Rio Irvi River, in the mining site of Montevecchio-Ingurtosu (Sardinia, Italy), which is severely contaminated by heavy metals and shows high concentrations of sulfates. The partial-least-square (PLS) analysis of the GC–MS data indicated that growth of C. melkonianii was characterized by an increase of the levels of threonic acid, myo-inositol, malic acid, and fumaric acid. Furthermore, at the sixth week of exponential phase the lipid fingerprint of C. melkonianii was studied by LC-QTOF-MS. C. melkonianii lipid extract characterized through an iterative MS/MS analysis showed the following percent levels: 61.34 ± 0.60% for triacylglycerols (TAG); 11.55 ± 0.09% for diacylglyceryltrimethyl homoserines (DGTS), 11.34 ± 0.10% for sulfoquinovosyldiacylglycerols (SQDG) and, 5.29 ± 0.04% for lysodiacylglyceryltrimethyl homoserines (LDGTS). Noteworthy, we were able to annotate different fatty acid ester of hydroxyl fatty acid, such as FAHFA (18:1_20:3), FAHFA (18:2_20:4), FAHFA (18:0_20:2), and FAHFA (18:1_18:0), with relevant biological activity. These approaches can be useful to study the biochemistry of this extremophile algae in the view of its potential exploitation in the phycoremediation of polluted mining areas.


Atmosphere ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 4
Author(s):  
Marc L. Mansfield ◽  
Seth N. Lyman

High concentrations of ground-level ozone have been observed during wintertime in the Uinta Basin of western Utah, USA, beginning in 2010. We analyze existing ozone and ozone precursor concentration data from 38 sites over 11 winter seasons and conclude that there has been a statistically significant (p < 0.02) decline in ozone concentration over the previous decade. Daily exceedances of the National Ambient Air Quality Standard for ozone (70 ppb) have been trending downward at the rate of nearly four per year. Ozone and NOx concentrations have been trending downward at the rates of about 3 and 0.3 ppb per year, respectively. Concentrations of organics in 2018 were at about 30% of their values in 2012 or 2013. Several markers, annual ozone exceedance counts and median ozone and NOx concentrations, were at their largest values in the period 2010 to 2013 and have never recovered since then. We attribute the decline to (1) weakening global demand for oil and natural gas and (2) more stringent pollution regulations and controls, both of which have occurred over the previous decade. We also see evidence of ozone titration when snow cover is absent.


Thorax ◽  
2001 ◽  
Vol 56 (6) ◽  
pp. 468-471
Author(s):  
G B Marks ◽  
J R Colquhoun ◽  
S T Girgis ◽  
M Hjelmroos Koski ◽  
A B A Treloar ◽  
...  

BACKGROUNDA study was undertaken to assess the importance of thunderstorms as a cause of epidemics of asthma exacerbations and to investigate the underlying mechanism.METHODSA case control study was performed in six towns in south eastern Australia. Epidemic case days (n = 48) and a random sample of control days (n = 191) were identified by reference to the difference between the observed and expected number of emergency department attendances for asthma. The occurrence of thunderstorms, their associated outflows and cold fronts were ascertained, blind to case status, for each of these days. In addition, the relation of hourly pollen counts to automatic weather station data was examined in detail for the period around one severe epidemic of asthma exacerbations. The main outcome measure was the number of epidemics of asthma exacerbations.RESULTSThunderstorm outflows were detected on 33% of epidemic days and only 3% of control days (odds ratio 15.0, 95% confidence interval 6.0 to 37.6). The association was strongest in late spring and summer. Detailed examination of one severe epidemic showed that its onset coincided with the arrival of the thunderstorm outflow and a 4–12 fold increase in the ambient concentration of grass pollen grains.CONCLUSIONSThese findings are consistent with the hypothesis that some epidemics of exacerbations of asthma are caused by high concentrations of allergenic particles produced by an outflow of colder air, associated with the downdraught from a thunderstorm, sweeping up pollen grains and particles and then concentrating them in a shallow band of air at ground level. This is a common cause of exacerbations of asthma during the pollen season.


Sign in / Sign up

Export Citation Format

Share Document