scholarly journals Pengimbuhan Minyak Jagung Terproteksi dengan Berbagai Level Protein Ransum Sapi Friesian Holstein Meningkatkan Kadar Asam Lemak Tidak Jenuh Susu

2018 ◽  
Vol 19 (1) ◽  
pp. 100
Author(s):  
Danes Suhendra ◽  
Sudjatmogo Sudjatmogo ◽  
Widiyanto Widiyanto

This study was aimed to examine level supplemenation of corn oil (CO) as a source of protected poly unsaturated fatty acids (PUFA) and various crude protein (CP) levels in diets to ruminal iodin number and milk fatty acids of Friesian Holstein. The research done through two stages, using in vivo method and in vivo method. The corn oil protection is performed by saponification using KOH and then tranformed using CaCl2 to calcium salt. Research use two treatment factors with three replications, the first factor was supplementation of PUFA (L) with details L0 (Without protection), L1 (supplementation 75% Protected CO), and L2 (Supplementation 80% Protected CO) and the second factor is the P1 crude protein level (CP 12%) and P2 (CP 16%). The results showed that there was no interaction effect between the supplementation of protected CO with protein level to the ruminal iodin number, saturated fatty acid (SFA), unsaturated fatty acid (UFA), linoleic acid (LA), monounsaturated fatty acids (MUFA) and polyunsaturated fatty acid (PUFA) milk. The parameters are iodin number and milk fatty acids. Result of this research show that supplementation of protected CO increased the ruminal iodin number (P<0.01), UFA (P=), LA (P=) and milk PUFA (P=). Supplementation protected CO decrease milk SFA (P=). It can be concluded that supplementation of protected CO increases milk UFA of FH.

2000 ◽  
Vol 279 (1) ◽  
pp. H35-H46 ◽  
Author(s):  
Yong-Fu Xiao ◽  
Sterling N. Wright ◽  
Ging Kuo Wang ◽  
James P. Morgan ◽  
Alexander Leaf

Voltage-gated cardiac Na+ channels are composed of α- and β1-subunits. In this study β1-subunit was cotransfected with the α-subunit of the human cardiac Na+ channel (hH1α) in human embryonic kidney (HEK293t) cells. The effects of this coexpression on the kinetics and fatty acid-induced suppression of Na+currents were assessed. Current density was significantly greater in HEK293t cells coexpressing α- and β1-subunits ( I Na,αβ) than in HEK293t cells expressing α-subunit alone ( I Na,α). Compared with I Na,α, the voltage-dependent inactivation and activation of I Na,αβ were significantly shifted in the depolarizing direction. In addition, coexpression with β1-subunit prolonged the duration of recovery from inactivation. Eicosapentaenoic acid [EPA, C20:5(n–3)] significantly reduced I Na,αβ in a concentration-dependent manner and at 5 μM shifted the midpoint voltage of the steady-state inactivation by −22 ± 1 mV. EPA also significantly accelerated channel transition from the resting state to the inactivated state and prolonged the recovery time from inactivation. Docosahexaenoic acid [C22:6(n–3)], α-linolenic acid [C18:3(n–3)], and conjugated linoleic acid [C18:2(n–6)] at 5 μM significantly inhibited both I Na,αβ and I Na,α.In contrast, saturated and monounsaturated fatty acids had no effects on I Na,αβ. This finding differs from the results for I Na,α, which was significantly inhibited by both saturated and unsaturated fatty acids. Our data demonstrate that functional association of β1-subunit with hH1α modifies the kinetics and fatty acid block of the Na+ channel.


1997 ◽  
Vol 77 (2) ◽  
pp. 287-292 ◽  
Author(s):  
Dirk Hoehler ◽  
Ronald R. Marquardt ◽  
Andrew A.F. Rohlich

The objective of this study was to determine whether lipid peroxidation is one mode of action in ochratoxin A (OA) toxicity in vivo. Lipid peroxidation was monitored by analyzing malondialdehyde (MDA) in different tissues by HPLC. A refinement study on the MDA assay was carried out, which showed the importance of the addition of an iron catalyst for the decomposition of hydroperoxides to yield a maximum amount of MDA from a given sample. The rat experiment was designed in a 2 × 2 factorial arrangement using 4 × 6 animals. The four different diets were fed for 21 d and contained either 1% corn oil and 9% tallow (Diets I and III) or 10% corn oil (Diets II and IV); in groups III and IV, 5 mg OA were added per kilogram of diet. For the chick experiment 4 × 8 Leghorn cockerels received diets for 14 d with no added sunflower oil (Diets I and III), whereas the diets of groups II and IV were supplemented with 2.5% sunflower oil. In groups III and IV, 2.5 mg OA were added per kilogram of diet. In both experiments OA decreased the performance of the animals significantly. In the rat experiment an increased lipid peroxidation due to a higher dietary level of unsaturated fatty acids could be obtained, when muscle samples were oxidatively stressed with Fe3+ and ascorbic acid. In the chick experiment there were very clear effects of the dietary treatment on the MDA concentrations of different tissues, as both a higher supply with unsaturated fatty acids and OA increased most of the MDA values significantly. These data suggest that lipid peroxides are formed in vivo by OA, but the effects may vary considerably from species to species, and may also be influenced by other factors. Key words: Ochratoxin A, lipid peroxidation, malondialdehyde, rat, chick


2020 ◽  
Vol 33 (10) ◽  
pp. 1573-1578
Author(s):  
Chan Hyuk Park ◽  
Umanthi Ranaraja ◽  
Chang Gwon Dang ◽  
Jong Joo Kim ◽  
Chang Hee Do

Objective: Milk fatty acid (FA) is a main nutritional component that markedly effects human health. Intentional modification of the FA profile has the potential to improve milk quality. This study aimed at the factors affecting elevated FA levels and the estimation of the genetic parameters for milk FAs in the Korean Holstein population.Methods: Total 885,249 repeated test-day milk records including, milk yield, saturated fatty acids (SFA), polyunsaturated fatty acids (PUFA), monounsaturated fatty acids (MUFA), total unsaturated fatty acids (TUFA), fat and protein percentages were analyzed using CombiFoss FT+ system (Foss Analytical A/S, Denmark). Genetic parameters were estimated by the restricted maximum likelihood procedure based on the repeatability model using the Wombat program.Results: The FA profile varies along with the lactation and the energy balance (EB). With the negative EB in early lactation, mobilization of body fat reserves elevates the desirable FA levels. As a result of that, milk quality is increased by means of nutritionally and usability aspects during the early lactation. Moreover, heritability estimates for SFA, MUFA, PUFA, TUFA were 0.33, 0.42, 0.37, 0.41 respectively. According to the parity wise heritability analysis, first parity cows had relatively lower heritability for SFAs (0.19) than later parities (0.28).Conclusion: Genetic parameters indicated that FAs were under stronger genetic control. Therefore, we suggest implementing animal breeding programs towards improving the milk FA profile.


2020 ◽  
Vol 9 (1) ◽  
pp. 10-19
Author(s):  
Daniel A N Apituley ◽  
Raja Bonan Dolok Sormin ◽  
Esterlina E E M Nanlohy

This study was aimed to determine the physical and chemical quality as well as the fatty acid profile of fish oil from the waste of the head and the bones of Thunnus albacares. An experimental method was applied in this research. Observed variables included yield, density, acid number, saponification value, iodine number, TBA value, as well as fatty acid profile. The results showed that the physical characteristics of the oil from the head and bone of the fish, i.e., yield 12,11% and 9.85%, density 0.92 mg/mL, and 0.90 mg/mL, respectively. The chemical characteristics of the oil from head and bones of tuna were acid number 2.10 mg KOH/g and 2.88 mg KOH/g, iodine number 88.80 mg KOH/g and 77.67 mg KOH/g; saponification number 178.80 mg KOH/g and 145.50 mg KOH/g, TBA values 1.80 mg KOH/kg and 1.29 mg KOH/kg, subsequently. Unsaturated fatty acids were found to dominate oil from the head and bones of tuna. Tuna head contained 25 types of fatty acids consisting of 10 types of saturated fatty acids (SFA) 20.8% w/w, seven types of monounsaturated fatty acids (MUFA) 11.92% w/w, eight polyunsaturated fatty acids (PUFA) 35.98% w/w. In comparison, tuna bones contained 26 types of fatty acids consisting of 11 SFA 19.69% w/w, seven MUFA 10.80% w/w, and 8 PUFA 26.21% w/w. Keywords: fatty acid, fish oil, Thunnus albacares, waste of head and bone   ABSTRAK Penelitian ini bertujuan untuk mengetahui kualitas fisik maupun kimiawi serta profil asam lemak minyak limbah ikan dari kepala dan tulang ikan tuna (Thunnus albacares). Metode yang digunakan adalah metode eksperimen. Parameter yang diamati yaitu: rendemen, berat jenis minyak, bilangan penyabunan, bilangan iodin, bilangan Tiobarbituric Acid (TBA) serta profil asam lemak. Hasil penelitian menunjukkan karakteristik fisik dari kepala dan tulang ikan berturut-turut adalah: rendemen 12,11 dan 9,85%; berat jenis minyak 0,92 mg/mL dan 0,90 mg/mL. Karakteristik kimia dari kepala dan tulang ikan tuna adalah berturut-turut: bilangan asam 2,10 mg KOH/g dan 2,88 mg KOH/g; bilangan iod 88,80 mg KOH/g dan 77,67 mg KOH/g; bilangan penyabunan 178,80 mg KOH/g dan 145,50 mg KOH/g; nilai TBA 1,80 mg KOH/kg dan 1,29 mg KOH/kg. Asam lemak tidak jenuh mendominasi minyak dari kepala maupun tulang ikan Tuna. Kepala ikan tuna mengandung 25 jenis asam lemak terdiri dari 10 jenis asam lemak jenuh (SFA) 20,8% w/w, 7 jenis lemak tak jenuh tunggal (MUFA) 11,92% w/w, 8 asam lemak tak jenuh jamak (PUFA) 35,98% w/w; sedangkan tulang ikan Tuna mengandung 26 jenis asam lemak terdiri dari 11 SFA 19,69% w/w, 7 MUFA 10,80% w/w, dan 8 PUFA 26,21% w/w. Kata kunci: asam lemak, minyak ikan, Thunnus albacares, limbah tulang dan kepala


2020 ◽  
Vol 10 (4) ◽  
pp. 653-657
Author(s):  
Wahyu Nopita ◽  
Mirni Lamid ◽  
. Agustono

Pangasius is a medium to very large freshwater shark catfish primarily used for consumption with high economic value. The content of pangasius fatty acids is higher than in marine fish, since marine fish have a lower saturated fatty acid composition than freshwater fish. The present research aimed to determine the effects of adding lysine essential amino acid to commercial feeds on the saturated and unsaturated fatty acids contents of pangasius fish. In the present research, an experimental method with completely randomized design was used. The treatment was done by adding lysine with different doses including P0 (0%), P1 (1.2%), P2 (2.2%), and P3 (3.2%). Each treatment was repeated five times. The main parameters studied were the content of saturated and unsaturated fatty acids in pangasius fish meat. The observed parameter was water quality. The present results indicated the use of lysine in commercial feed caused significant differences in the content of saturated fatty acids, Monounsaturated Fatty Acids (MUFA) and Polyunsaturated Fatty Acids (PUFA) in pangasius meat; a decrease in the saturated fatty acids content was found in P3 with 3.2% (3.5882 mg/dl). In P2, an increase in the MUFA content of 2.2% (5.9630 mg/dl) was found. An increase in the PUFA content was found in P3 treatment with 3.2% Lysin (23.1082 mg/dl). P1, P2 and P3 indicated lower results than control treatments (P0). The use of lysine in commercial feed indicated significant differences in the content of saturated fatty acids, MUFA and PUFA in pangasius.


1959 ◽  
Vol 197 (4) ◽  
pp. 893-896 ◽  
Author(s):  
Takuya Hayashida ◽  
Oscar W. Portman

The effect of feeding diets deficient in essential fatty acids on the composition of adrenal lipids and on the secretory activity of adrenocortical hormones was studied. Rats which were fed diets devoid of fat had lower levels of tetraenoic and pentaenoic acids and higher levels of trienoic acids in both the total lipid and cholesterol ester fraction than did rats receiving a supplement of corn oil. There was a greater accumulation of cholesterol esterified with saturated and monounsaturated fatty acids in the adrenals of the rats fed essential fatty acid-deficient diets. The adrenals of the essential fatty acid-deficient rats secreted smaller quantities of steroid hormones in vitro under the stimulation of ACTH.


2004 ◽  
Vol 186 (13) ◽  
pp. 4152-4158 ◽  
Author(s):  
Elizabeth M. Fozo ◽  
Robert G. Quivey

ABSTRACT Previously, it has been demonstrated that the membrane fatty acid composition of Streptococcus mutans is affected by growth pH (E. M. Fozo and R. G. Quivey, Jr., Appl. Environ. Microbiol. 70:929-936, 2004; R. G. Quivey, Jr., R. Faustoferri, K. Monahan, and R. Marquis, FEMS Microbiol. Lett. 189:89-92, 2000). Specifically, the proportion of monounsaturated fatty acids increases when the organism is grown in acidic environments; if the shift to increased monounsaturated fatty acids is blocked by the addition of a fatty acid biosynthesis inhibitor, the organism is rendered more acid sensitive (E. M. Fozo and R. G. Quivey, Jr., Appl. Environ. Microbiol. 70:929-936, 2004). Recently, work with Streptococcus pneumoniae has identified a novel enzyme, FabM, responsible for the production of monounsaturated fatty acids (H. Marrakchi, K. H. Choi, and C. O. Rock, J. Biol. Chem. 277:44809-44816, 2002). Using the published S. pneumoniae sequence, a putative FabM was identified in the S. mutans strain UA159. We generated a fabM strain that does not produce unsaturated fatty acids as determined by gas chromatography of fatty acid methyl esters. The mutant strain was extremely sensitive to low pH in comparison to the wild type; however, the acid-sensitive phenotype was relieved by growth in the presence of long-chain monounsaturated fatty acids or through genetic complementation. The strain exhibited reduced glycolytic capability and altered glucose-PTS activity. In addition, the altered membrane composition was more impermeable to protons and did not maintain a normal ΔpH. The results suggest that altered membrane composition can significantly affect the acid survival capabilities, as well as several enzymatic activities, of S. mutans.


2021 ◽  
Author(s):  
Yulianri Rizki Yanza ◽  
Malgorzata Szumacher-Strabel ◽  
Dorota Lechniak ◽  
Sylwester Ślusarczyk ◽  
Pawel Kolodziejski ◽  
...  

Abstract Background: This study aimed to investigate the effect of biologically active compounds (BAC) of Coleus amboinicus Lour. (CAL) herb fed to growing lambs on ruminal methane production, ruminal biohydrogenation of unsaturated fatty acids and meat characteristics. An in vitro trial (Experiment 1) comprising of control and three experimental diets (CAL constituting 10%, 15%, and 20% of the total diet) was conducted to determine an effective dose for in vivo experiments. After the in vitro trial, two in vivo experiments were conducted on six growing, rumen-cannulated lambs (Experiment 2) and 16 growing lambs (Experiment 3), which were assigned into the control (CON) and one experimental diet (20% of CAL). Several parameters were examined in vitro (pH, ammonia and VFA concentrations, protozoa, methanogens and select bacteria populations) and in vivo (methane production, digestibility, ruminal microorganism populations, meat quality, fatty acids profiles in rumen fluid and meat, transcript expression of 5 genes in meat). Results: The CAL lowered in vitro methane production by 51%. In the in vivo experiments, lambs fed CAL decreased methane production by 20% compared with the CON animals (Experiment 3), which corresponded to the reduced total methanogens counts in all experiments up to 28%, notably Methanobacteriales. In Experiment 3, CAL increased or tended to increase the numbers of Ruminococcus albus, Megasphaeraelsdenii, Butyrivibrioproteoclasticus, and Butyrivibriofibrisolvens. Dietary CAL suppressed the Holotricha population, but increased or tended to increase Entodiniomorpha population in Experiments 2 and 3. An increase in the polyunsaturated fatty acid (PUFA) proportion in the rumen of lambs was noted in response to the CAL diet, which was mainly attributable to the increase in C18:3 cis-9 cis-12 cis-15 (LNA) proportion. The CAL reduced the mRNA expressions of four investigated genes in meat (fatty acid synthase, stearoyl-CoA desaturase, lipoprotein lipase, and fatty acid desaturase 1). Conclusions:Summarizing, polyphenols of CAL (20% in diet) origin can mitigate ruminal methane production by inhibiting the methanogens communities. Supplementation of CAL also provides favorable conditions in the rumen by modulating ruminal bacteria involved in fermentation and biohydrogenation of fatty acids. CAL elevated the LNA concentration, which led to improved meat quality through increased deposition of n-3 PUFA.


1994 ◽  
Vol 14 (2) ◽  
pp. 312-323 ◽  
Author(s):  
S. Wakabayashi ◽  
L. M. Freed ◽  
J. M. Bell ◽  
S. I. Rapoport

We examined effects of acute unilateral enucleation on incorporation from blood of intravenously injected unsaturated [1-14C]arachidonic acid ([14C]AA) and [1-14C]docosahexaenoic acid ([14C]DHA), and of saturated [9,10-3H]palmitic acid ([3H]PA), into visual and nonvisual brain areas of awake adult Long-Evans hooded rats. Regional cerebral metabolic rate for glucose (rCMRglc) values also were assessed with 2-deoxy-d-[1-14C]glucose ([14C]DG). One day after unilateral enucleation, an awake rat was placed in a brightly lit visual stimulation box with black and white striped walls, and a radiolabeled fatty acid was infused for 5 min or [14C]DG was injected as a bolus. [14C]DG also was injected in a group of rats kept in the dark for 4 h. Fifteen minutes after starting an infusion of a radiolabeled fatty acid, or 45 min after injecting [14C]DG, the rat was killed and the brain was prepared for quantitative autoradiography. Incorporation coefficients k* of fatty acids, or rCMRglc values, were calculated in homologous brain regions contralateral and ipsilateral to enucleation. As compared with ipsilateral regions, rCMRglc was reduced significantly (by as much as - 39%) in contralateral visual areas, including the superior colliculus, lateral geniculate body, and layers I, IV, and V of the primary (striate) and secondary (association, extrastriate) visual cortices. Enucleation did not affect incorporation of [3H]PA into contralateral visual regions, but reduced incorporation of [14C]AA and of [14C]DHA by - 18.5 to - 2.1%. Percent reductions were correlated with percent reductions in rCMRglc in most but not all regions. No effects were noted at any of nine nonvisual structures that were examined. These results indicate that enucleation acutely reduces neuronal activity in contralateral visual areas of the awake rat and that the reductions are coupled to reduced incorporation of unsaturated fatty acids into sn-2 regions of phosphatidylcholine, phosphatidylinositol, and phosphatidylethanolamine. Reduced fatty acid incorporation likely reflects reduced activity of phospholipases A2 and/or phospholipase C.


2011 ◽  
Vol 48 (2) ◽  
pp. 125-137 ◽  
Author(s):  
Aly Aly ◽  
Ezzat Hussein ◽  
Moawad Omar ◽  
Ibrahim El-Abbasi ◽  
Kamel Abd-Elsalam

Effect of fatty acid content on the level of cottonseed colonization by fungiNon-sterilized seeds of 12 Egyptain cotton (Gossypium barbadenseL.) genotypes were examined for qualitative and quantitative estimates of seed-borne fungi.Rhizopus stolonifer(39.7%),Aspergillus niger(33.5%), andPenicilliumsp. (23.3%) were the most predominant fungi isolated from the seeds. Other fungi occurred at frequencies that ranged from 0.3 to 17.7%. Gas-liquid chromatography (GLC) analysis of fatty acid composition of the seeds revealed the presence of the following fatty acids: caproic, caprylic, capric, lauric, myristic, palmitic, margaric, stearic, oleic, linoleic, and linolenic. The total mean percentage of the monounsaturated fatty acids was 59.11%, while that of the unsaturated fatty acids was 16.72%. Isolation frequencies ofAlternaria alternata, A. flavus, A. nigerwere not significantly correlated with the content of any fatty acid. Isolation frequencies of the other fungi were significantly correlated with the content of 1-2 fatty acids.Cladosporiumsp. was a notable exception because its isolation frequency was significantly correlated with the content of caproic (r= 0.926,p< 0.01), caprylic (r= 0.638,p< 0.05), palmitic (r= -0.586,p< 0.05), and linoleic acid (r= 0.917,p< 0.01). It was possible to group the isolated fungi into 5 distinct categories based on their sensitivity to the fatty acids (the magnitude ofR2 values). The results of the present investigation suggest that certain fatty acids regulate the colonization of cottonseed by fungi, and that the control of these fungi may be possible by modifying the fatty acid content of the seed.


Sign in / Sign up

Export Citation Format

Share Document