scholarly journals Modelling of the air pollutants’ cold-start emissions depending on average vehicles’ speed

2021 ◽  
Author(s):  
Piotr Laskowski ◽  
Magdalena Zimakowska-Laskowska ◽  
Damian Zasina

The aim of the study is to present the results of mathematically modeled influence of the average speed on the pollutant released in the air during the cold-start process. There were taken into consideration the emission from the passenger cars (PCs) for the different fuel types, vehicles’ segments (including hybrid), and the Euro standard. In the article the simulations was performed using the COPERT software, as well as WLTP-based research. The modelling results there are presented show that the change in average speed has a significant effect on air pollutant (CO2, NOx, NMVOC, CO) emissions released in cold-start process. Furthermore, the results show that pollutants’ emissions are sensitive to average speed fluctuations.

Author(s):  
Celal Taşdoğan ◽  
Bilgen Taşdoğan

Turkey has realized high growth rates during the period of 2002-2011, except in 2008 and 2009 years. It is thought that the rapidly growing in the country may cause a lot of environmental damage, especially air pollution problems. In other words, the productive sectors have produced two outputs which are economic value added and air pollutants. This study used input output matrixes are to find out the strategically important sectors as it is known key sectors and weak sectors caused the environmental effects in the country. For this purpose, it has been tried to investigate air pollutant quantities which caused by the production process of the sectors in the period of 2002-2011 and performed the input-output tables for Turkey constructed in the World Input Output Database (WIOD) Project. These input-output tables include the emission satellite accounts, which are CO2 emissions and other air pollutants, respectively N2O, CH4, N2O, NOx, SOx, CO, NMVOC and NH3, disaggregated for the 34 sectors. It is expected that the outcomes of the study may contribute to sustainable growth debates and environmental policy implementations in Turkey.


Author(s):  
Qiwei Yu ◽  
Liqiang Zhang ◽  
Kun Hou ◽  
Jingwen Li ◽  
Suhong Liu ◽  
...  

Exposure to air pollution has been suggested to be associated with an increased risk of women’s health disorders. However, it remains unknown to what extent changes in ambient air pollution affect gynecological cancer. In our case–control study, the logistic regression model was combined with the restricted cubic spline to examine the association of short-term exposure to air pollution with gynecological cancer events using the clinical data of 35,989 women in Beijing from December 2008 to December 2017. We assessed the women’s exposure to air pollutants using the monitor located nearest to each woman’s residence and working places, adjusting for age, occupation, ambient temperature, and ambient humidity. The adjusted odds ratios (ORs) were examined to evaluate gynecologic cancer risk in six time windows (Phase 1–Phase 6) of women’s exposure to air pollutants (PM2.5, CO, O3, and SO2) and the highest ORs were found in Phase 4 (240 days). Then, the higher adjusted ORs were found associated with the increased concentrations of each pollutant (PM2.5, CO, O3, and SO2) in Phase 4. For instance, the adjusted OR of gynecological cancer risk for a 1.0-mg m−3 increase in CO exposures was 1.010 (95% CI: 0.881–1.139) below 0.8 mg m−3, 1.032 (95% CI: 0.871–1.194) at 0.8–1.0 mg m−3, 1.059 (95% CI: 0.973–1.145) at 1.0–1.4 mg m−3, and 1.120 (95% CI: 0.993–1.246) above 1.4 mg m−3. The ORs calculated in different air pollution levels accessed us to identify the nonlinear association between women’s exposure to air pollutants (PM2.5, CO, O3, and SO2) and the gynecological cancer risk. This study supports that the gynecologic risks associated with air pollution should be considered in improved public health preventive measures and policymaking to minimize the dangerous effects of air pollution.


2014 ◽  
Vol 14 (17) ◽  
pp. 8849-8868 ◽  
Author(s):  
Y. Zhao ◽  
J. Zhang ◽  
C. P. Nielsen

Abstract. To examine the efficacy of China's actions to control atmospheric pollution, three levels of growth of energy consumption and three levels of implementation of emission controls are estimated, generating a total of nine combined activity-emission control scenarios that are then used to estimate trends of national emissions of primary air pollutants through 2030. The emission control strategies are expected to have more effects than the energy paths on the future emission trends for all the concerned pollutants. As recently promulgated national action plans of air pollution prevention and control (NAPAPPC) are implemented, China's anthropogenic pollutant emissions should decline. For example, the emissions of SO2, NOx, total suspended particles (TSP), PM10, and PM2.5 are estimated to decline 7, 20, 41, 34, and 31% from 2010 to 2030, respectively, in the "best guess" scenario that includes national commitment of energy saving policy and implementation of NAPAPPC. Should the issued/proposed emission standards be fully achieved, a less likely scenario, annual emissions would be further reduced, ranging from 17 (for primary PM2.5) to 29% (for NOx) declines in 2015, and the analogue numbers would be 12 and 24% in 2030. The uncertainties of emission projections result mainly from the uncertain operational conditions of swiftly proliferating air pollutant control devices and lack of detailed information about emission control plans by region. The predicted emission trends by sector and chemical species raise concerns about current pollution control strategies: the potential for emissions abatement in key sectors may be declining due to the near saturation of emission control devices use; risks of ecosystem acidification could rise because emissions of alkaline base cations may be declining faster than those of SO2; and radiative forcing could rise because emissions of positive-forcing carbonaceous aerosols may decline more slowly than those of SO2 emissions and thereby concentrations of negative-forcing sulfate particles. Expanded control of emissions of fine particles and carbonaceous aerosols from small industrial and residential sources is recommended, and a more comprehensive emission control strategy targeting a wider range of pollutants (volatile organic compounds, NH3 and CO, etc.) and taking account of more diverse environmental impacts is also urgently needed.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Gavin Sun ◽  
Glen Hazlewood ◽  
Sasha Bernatsky ◽  
Gilaad G. Kaplan ◽  
Bertus Eksteen ◽  
...  

Objective. Environmental risk factors, such as air pollution, have been studied in relation to the risk of development of rheumatic diseases. We performed a systematic literature review to summarize the existing knowledge.Methods. MEDLINE (1946 to September 2016) and EMBASE (1980 to 2016, week 37) databases were searched using MeSH terms and keywords to identify cohort, case-control, and case cross-over studies reporting risk estimates for the development of select rheumatic diseases in relation to exposure of measured air pollutants (n=8). We extracted information on the population sample and study period, method of case and exposure determination, and the estimate of association.Results. There was no consistent evidence of an increased risk for the development of rheumatoid arthritis (RA) with exposure to NO2, SO2, PM2.5, or PM10. Case-control studies in systemic autoimmune rheumatic diseases (SARDs) indicated higher odds of diagnosis with increasing PM2.5exposure, as well as an increased relative risk for juvenile idiopathic arthritis (JIA) in American children <5.5 years of age. There was no association with SARDs and NO2exposure.Conclusion. There is evidence for a possible association between air pollutant exposures and the development of SARDs and JIA, but relationships with other rheumatic diseases are less clear.


Author(s):  
Laura Goulier ◽  
Bastian Paas ◽  
Laura Ehrnsperger ◽  
Otto Klemm

Since operating urban air quality stations is not only time consuming but also costly, and because air pollutants can cause serious health problems, this paper presents the hourly prediction of ten air pollutant concentrations (CO2, NH3, NO, NO2, NOx, O3, PM1, PM2.5, PM10 and PN10) in a street canyon in Münster using an artificial neural network (ANN) approach. Special attention was paid to comparing three predictor options representing the traffic volume: we included acoustic sound measurements (sound), the total number of vehicles (traffic), and the hour of the day and the day of the week (time) as input variables and then compared their prediction powers. The models were trained, validated and tested to evaluate their performance. Results showed that the predictions of the gaseous air pollutants NO, NO2, NOx, and O3 reveal very good agreement with observations, whereas predictions for particle concentrations and NH3 were less successful, indicating that these models can be improved. All three input variable options (sound, traffic and time) proved to be suitable and showed distinct strengths for modelling various air pollutant concentrations.


Author(s):  
B. Yorkor ◽  
T. G. Leton ◽  
J. N. Ugbebor

This study investigated the temporal variations of air pollutant concentrations in Ogoni area, Niger Delta, Nigeria. The study used hourly data measured over 8 hours for 12 months at selected locations within the area. The analyses were based on time series and time variations techniques in Openair packages of R programming software. The variations of air pollutant concentrations by time of day and days of week were simulated. Hours of the day, days of the week and monthly variations were graphically simulated. Variations in the mean concentrations of air pollutants by time were determined at 95 % confidence intervals. Sulphur dioxide (SO2), Nitrogen dioxide (NO2), ground level Ozone (O3) and fine particulate matter (PM2.5) concentrations exceeded permissible standards. Air pollutant concentrations showed increase in January, February, November and December compared to other months. Simulation showed that air pollutants varied significantly by hours-of-the-day and days-of-the-week and months-of-the-year. Analysis of temporal variability revealed that air pollutant concentrations increased during weekdays and decreased during weekends. The temporal variability of air pollutants in Ogoni area showed that anthropogenic activities were the main sources of air pollution in the area, therefore further studies are required to determine air pollutant dispersion pattern and evaluation the potential sources of air pollution in the area.


2019 ◽  
Vol 5 (1) ◽  
pp. 39
Author(s):  
Rizki Intan Mauliza ◽  
Tania Bonita Sabrina ◽  
Wahyu Maulana

ABSTRAKSalah satu faktor penyebab kecelakaan yang signifikan adalah tidak sesuainya kecepatan kendaraan dengan kondisi jalan, lingkungan dan kegiatan, dalam hal ini adalah kecepatan yang terlalu tinggi. Jalan tol/jalan bebas hambatan merupakan salah satu jalan yang berpotensi memiliki banyak pelanggaran dalam kecepatan kendaraan. Batasan kecepatan jalan tol telah di atur dalam PM Hub 111/2015 yaitu 40 km/jam untuk tol dalam kota dan 60 km/jam - 100 km/jam untuk tol luar kota. Untuk memastikan kecepatan rata-rata kendaraan dan menentukan tingkat pelanggaran kendaraan yang melintasi ruas jalan tol Cipularang maka penelitian menggunakan metode pengumpulan data primer/pengamatan secara langsung. Hasil analisis secara keseluruhan didapatkan bahwa rata-rata kecepatan kendaraan mobil penumpang sebesar 88 km/jam, truk 62 km/jam dan bus 72 km/jam dengan persentasi kecepatan rata-rata untuk mobil penumpang, truk dan bus berturut-turut sebesar 43%, 5% dan 22%. Hal ini menunjukan terdapat pelanggaran batas kecepatan maksimum untuk kendaraan mobil penumpang dengan prosentase yang tinggi (lebih dari 30%) atau kecepatan rata-rata lebih dari 80 km/jam.Kata kunci: kecelakaan, batas kecepatan, jalan tol ABSTRACTOne factors of a significant accident is not according to the speed of the vehicle with the environment, environment and activities, in this case the speed is too high. Toll road / freeway is one of the roads that has many roads in the vehicle. The toll road speed limit has been set in PM Hub 111/2015, which is 40 km/hour  for city tolls and 60 km/hour  100 km/hour for out-of-city toll roads. To determine the average speed of a vehicle and determine the level of the vehicle passing through the Cipularang toll road, the study uses the primary data / direct search method. The overall analysis results are obtained that the average speed of passenger car vehicles is 88 km/hour, trucks 62 km/hour and buses 72 km/hour with the percentage of average speed for passenger cars, trucks and buses being helped-along by 43%, 5% and 22%. This shows the maximum speed limit for passenger car vehicles with a higher percentage (more than 30%) or an average speed of more than 80 km/hour.Keywords: accidents, speed limits, toll roads


2021 ◽  
Author(s):  
Joseph Woodburn

This paper reviews the emissions of reactive nitrogen compounds (RNCs) from modern vehicles fitted with spark ignition en-gines and three-way catalysts. Specific aspects of the pollutants involved – and their formation – are discussed. Cold start driving cycles are scenarios under which emissions of all four RNCs can be significant; the mechanisms behind emissions trends are ex-plored. Experimental data obtained from two vehicles tested over two different cold start driving cycles are presented and analysed. The use of gravimetric and molar metrics are explored. Ammonia, a species which is currently not regulated for passenger cars in any automotive market, is identified as forming the majority of the RNC emissions over the entire driving cycle. While ammonia emissions are strongly linked to aftertreatment system warmup and periods of high load, significant ammonia emissions were also measured under certain hot-running, low load conditions, and even at idle. For the majority of the duration of the test procedures employed, the RNC profile was dominated by ammonia, which accounted for between 69% and 86% of measured RNCs in the ex-haust gas. Emissions are compared to the available legislative precedents (i.e. emissions limits currently in force in various jurisdic-tions). Finally, possibilities for control of exhaust emissions of currently unregulated RNCs are briefly discussed.


Author(s):  
Han Cao ◽  
Bingxiao Li ◽  
Tianlun Gu ◽  
Xiaohui Liu ◽  
Kai Meng ◽  
...  

Evidence regarding the effects of environmental factors on COVID-19 transmission is mixed. We aimed to explore the associations of air pollutants and meteorological factors with COVID-19 confirmed cases during the outbreak period throughout China. The number of COVID-19 confirmed cases, air pollutant concentrations, and meteorological factors in China from January 25 to February 29, 2020, (36 days) were extracted from authoritative electronic databases. The associations were estimated for a single-day lag as well as moving averages lag using generalized additive mixed models. Region-specific analyses and meta-analysis were conducted in 5 selected regions from the north to south of China with diverse air pollution levels and weather conditions and sufficient sample size. Nonlinear concentration–response analyses were performed. An increase of each interquartile range in PM2.5, PM10, SO2, NO2, O3, and CO at lag4 corresponded to 1.40 (1.37–1.43), 1.35 (1.32–1.37), 1.01 (1.00–1.02), 1.08 (1.07–1.10), 1.28 (1.27–1.29), and 1.26 (1.24–1.28) ORs of daily new cases, respectively. For 1°C, 1%, and 1 m/s increase in temperature, relative humidity, and wind velocity, the ORs were 0.97 (0.97–0.98), 0.96 (0.96–0.97), and 0.94 (0.92–0.95), respectively. The estimates of PM2.5, PM10, NO2, and all meteorological factors remained significantly after meta-analysis for the five selected regions. The concentration–response relationships showed that higher concentrations of air pollutants and lower meteorological factors were associated with daily new cases increasing. Higher air pollutant concentrations and lower temperature, relative humidity and wind velocity may favor COVID-19 transmission. Controlling ambient air pollution, especially for PM2.5, PM10, NO2, may be an important component of reducing risk of COVID-19 infection. In addition, as winter months are arriving in China, the meteorological factors may play a negative role in prevention. Therefore, it is significant to implement the public health control measures persistently in case another possible pandemic.


Sign in / Sign up

Export Citation Format

Share Document