scholarly journals MICROBIAL PATTERNS OF HOSPITALIZED HIV POSITIVE PATIENTS ADMITTED IN DR. SOETOMO GENERAL HOSPITAL, SURABAYA INDONESIA

2021 ◽  
Vol 5 (1) ◽  
pp. 1
Author(s):  
Feriawan Tan ◽  
Erwin Astha Triyono ◽  
Manik Retno Wahyunitisari

Background: HIV patients with a weak immune system are very vulnerable to opportunistic infections, can trigger systemic endothelial activation and end up as a condition of sepsis. In Indonesia currently, there is no bacterial epidemiological mapping of the etiology of opportunistic infections in HIV patients. Purpose: To determine the pattern of bacteria that cause opportunistic infections and their antibiotic sensitivity in HIV patients. Method: Prospective observational study design. Data were obtained from medical records of hospitalized patients at RSUD Dr. Soetomo Surabaya from August 2019 - February 2020. Result: Out of 64 patients, 83 specimens were found with the most types of gram-negative bacteria 44.6%, while gram-positive bacteria were 15.7% and a mix of 2.4% and 37.3% negative culture. The highest prevalence of gram-negative bacteria was Klebsiella pneumoniae (35.15), followed by Escherichia coli (10.8%), Pseudomonas aeruginosa (8.1%), and Acinetobacter baumanii (8.1%). The highest prevalence of gram-positive bacteria was Streptococcus mitis / oralis (30.7%), followed by Staphylococcus aureus (23.1%) and Staphylococcus epidermidis (15.4%). Among gram-negative bacteria antibiotic, Cefoperazone-sulbactam showed the greatest sensitivity, following by Amikacin, Gentamycin and Piperacillin-tazobactam; while among gram-positive bacteria are Chloramphenicol, Linezolid, and Vancomycin. Almost all isolates showed resistance to Ampicillin. Conclusion: Bacteria pattern that caused opportunistic infection in RSUD Dr. Soetomo is K. pneumonia as most common gram-negative bacteria followed by E. coli, P. aeruginosa and A. baumanii; while the most gram-positive bacteria found are S. mitis/oralis and S. aureus. Among antibiotic used, Ampicillin showed the lowest sensitivity to almost all bacteria isolates.

2018 ◽  
Author(s):  
Fernanda L. Paganelli ◽  
Helen L. Leavis ◽  
Samantha He ◽  
Nina M. van Sorge ◽  
Christine Payré ◽  
...  

AbstractHuman innate immunity employs cellular and humoral mechanisms to facilitate rapid killing of invading bacteria. The direct killing of bacteria by human serum is mainly attributed to the activity of the complement system that forms pores in Gram-negative bacteria. Although Gram-positive bacteria are considered resistant to serum killing, we here uncover that normal human serum effectively killsEnterococcus faecium.Comparison of a well-characterized collection of commensal and clinicalE. faeciumisolates revealed that human serum specifically kills commensalE. faeciumstrains isolated from normal gut microbiota, but not clinical isolates. Inhibitor studies show that the human group IIA secreted phospholipase A2 (hGIIA), but not complement, is responsible for killing of commensalE. faeciumstrains in human normal serum. This is remarkable since hGIIA concentrations in ‘non-inflamed’ serum were considered too low to be bactericidal against Gram-positive bacteria. Mechanistic studies showed that serum hGIIA specifically causes permeabilization of commensalE. faeciummembranes. Altogether, we find that a normal serum concentration of hGIIA effectively kills commensalE. faeciumand that hGIIA resistance of clinicalE. faeciumcould have contributed to the ability of these strains to become opportunistic pathogens in hospitalized patients.ImportanceHuman normal serum contains antimicrobial components that effective kill invading Gram-negative bacteria. Although Gram-positive bacteria are generally considered resistant to serum killing, here we show that normal human effectively kills the Gram-positiveEnterococcus faeciumstrains that live as commensals in the gut of humans. In contrast, clinicalE. faeciumstrains that are responsible for opportunistic infections in debilitated patients are resistant against human serum. The key factor in serum responsible for killing is group IIA secreted phospholipase A2 (hGIIA) that effectively destabilizes commensalE. faeciummembranes. We believe that hGIIA resistance by clinicalE. faeciumcould have contributed to the ability of these strains to cause opportunistic infections in hospitalized patients. Altogether, understanding mechanisms of immune defense and bacterial resistance could aid in further development of novel anti-infective strategies against medically important multidrug resistant Gram-positive pathogens.


Author(s):  
Sotianingsih Sotianingsih ◽  
Samsirun H. ◽  
Lipinwati Lipinwati

Pneumonia is defined as an inflammation of the lungs caused by microorganisms (bacteria, viruses, fungi, parasites). This research aimed to determine the pneumonia-causing bacteria along with the sensitivity and the antibiotic resistance test. This research was a descriptive study with samples of ICU pneumonia patients at Raden Mattaher Regional Hospital during the study period. All samples were consecutively selected. Samples for blood culture were incubated in the BactAlert device, whereas the sensitivity test was then performed using Vitex instruments. Sputum was previously enriched with BHI media and then cultured on culture media, and sensitivity test with the Vitex instruments was carried out. Of the 354 ICU patients during the study period, 30 patients (11.8%) had pneumonia, but only 19 patients could undergo sputum culture. Five of 19 patients were infected with Gram-positive bacteria, and 14 patients were infected with Gram-negative bacteria. The most commonly found bacteria were Klebsiella pneumonia (36.84%), followed by Acinetobacter baumanii (21.05%) and Pseudomonas aeruginosa (10.53%). Gram-negative bacteria obtained from sputum culture in this study were resistant to almost all antibiotic groups, especially penicillin, cephalosporin, quinolone, and tetracycline groups. Gram-positive bacteria obtained from sputum culture in this study were resistant to the penicillin antibiotic. The most commonly found bacteria were Klebsiella pneumonia (36.84%), followed by Acinetobacter baumanii (21.05%) and Pseudomonas aeruginosa (10.53%). The bacteria cultured from the sputum showed multidrug resistance mainly to the penicillin and cephalosporin antibiotic. This research data can be used to consider the treatment of pneumonia patients to decide more appropriate therapy.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Dongkai Sun ◽  
Peishan Cong ◽  
Fengju Guan ◽  
Shuai Liu ◽  
Lijiang Sun ◽  
...  

Objective. We sought to analyze the distribution and antibiotic sensitivity of pathogens in hospitalized patients and to provide a scientific reference for the rational application of antibiotics. Methods. From January 2014 to December 2018, urine cultures from patients in our hospital were collected and analyzed retrospectively for the presence, distribution, and drug sensitivity of pathogens. Results. A total of 42,854 midstream urine cultures were collected from which 11,891 (27.75%) pathogens were isolated, including 8101 (68.13%) strains of gram-negative bacteria, 2580 (21.69%) strains of gram-positive bacteria, and 1210 (10.18%) strains of fungi. Escherichia coli and Enterococci were the most common species of gram-negative and gram-positive bacteria, respectively. Drug sensitivity varied among different pathogens. Clear drug resistance was observed in bacteria, while fungus exhibited relatively lower resistance. Conclusion. Pathogens responsible for urinary tract infections in hospitalized patients are diversiform and display resistance to some antibiotics. Drug resistance monitoring should be enhanced to optimize antimicrobial therapy.


Author(s):  
Jacob S. Hanker ◽  
Paul R. Gross ◽  
Beverly L. Giammara

Blood cultures are positive in approximately only 50 per cent of the patients with nongonococcal bacterial infectious arthritis and about 20 per cent of those with gonococcal arthritis. But the concept that gram-negative bacteria could be involved even in chronic arthritis is well-supported. Gram stains are more definitive in staphylococcal arthritis caused by gram-positive bacteria than in bacterial arthritis due to gram-negative bacteria. In the latter situation where gram-negative bacilli are the problem, Gram stains are helpful for 50% of the patients; they are only helpful for 25% of the patients, however, where gram-negative gonococci are the problem. In arthritis due to gram-positive Staphylococci. Gramstained smears are positive for 75% of the patients.


Author(s):  
Elaf Ayad Kadhem ◽  
Miaad Hamzah Zghair ◽  
Sarah , Hussam H. Tizkam, Shoeb Alahmad Salih Mahdi ◽  
Hussam H. Tizkam ◽  
Shoeb Alahmad

magnesium oxide nanoparticles (MgO NPs) were prepared by simple wet chemical method using different calcination temperatures. The prepared NPs were characterized by Electrostatic Discharge (ESD), Scanning Electron Microscope (SEM) and X-ray Diffraction (XRD). It demonstrates sharp intensive peak with the increase of crystallinty and increase of the size with varying morphologies with respect to increase of calcination temperature. Antibacterial studies were done on gram negative bacteria (E.coli) and gram positive bacteria (S.aureus) by agar disc diffusion method. The zones of inhibitions were found larger for gram positive bacteria than gram negative bacteria, this mean, antibacterial MgO NPs activity more active on gram positive bacteria than gram negative bacteria because of the structural differences. It was found that antibacterial activity of MgO NPs was found it has directly proportional with their concentration.


2020 ◽  
Vol 8 (1) ◽  
pp. 122
Author(s):  
Eghbert Eghbert Elvan Eghbert Elvan Ampou ◽  
Iis Iis Triyulianti ◽  
Nuryani Widagti ◽  
Suciadi Catur Nugroho ◽  
Yuli Pancawati

Research on hard coral (Scleractinian coral) contaminated with bacteria is still not much done, especially in Indonesian waters. This study took samples of coral mucus in 2010 at 3 (three) different locations, namely Bunaken (May); Morotai (September) and Raja Ampat (November), which focused on the analysis of Research on hard coral (Scleractinian coral) contaminated with bacteria is still not much done, especially in Indonesian waters. This study took samples of coral mucus in 2010 at 3 (three) different locations, namely Bunaken (May); Morotai (September) and Raja Ampat (November), which focused on the analysis of gram-positive and gram-negative bacteria. The method used for field sampling is time swim, which is by diving at a depth of 5-10 meters for ± 30 minutes and randomly taking samples of coral mucus using siring or by taking directly on corals (reef branching). Mucus samples were analyzed by bacterial isolation in the laboratory. The result shows that there were differences between gram-positive and gram-negative bacteria in the three research sites and that gram-positive bacteria were higher or dominant. Further research that can identify the bacteria species and explain its relationship to the ecosystem is highly recommended.Keywords: Bacteria, Scleractinian coral, gram-positive and -negative, Bunaken, Morotai, Raja Ampat  AbstrakPenelitian tentang karang keras (Scleractinian coral) yang terkontaminasi bakteri masih belum banyak dilakukan, terutama di perairan Indonesia. Penelitian ini mengambil sampel mucus karang pada tahun 2010 di 3 (tiga) lokasi berbeda, yakni Bunaken (Mei); Morotai (September) dan Raja Ampat (November), yang difokuskan pada analisis bakteri gram postif dan gram negatif. Metode yang digunakan untuk pengambilan sampel di lapangan adalah time swim, yaitu dengan penyelaman pada kedalaman 5-10 meter selama ±30 menit dan mengambil sampel mucus karang secara acak menggunakan siring atau dengan mengambil langsung pada karang (fraksi cabang). Sampel mucus dianalisis dengan cara isolasi bakteri di laboratorium. Hasil analisis menunjukkan bahwa ada perbedaan antara bakteri gram positif dan gram negative di tiga lokasi survei dan bakteri gram positif lebih tinggi atau dominan. Penelitian lebih lanjut yang dapat menentukan jenis bakteri serta menjelaskan hubungannya dengan ekosistem sangat disarankan untuk dilakukan.Kata Kunci : Bakteri, Scleractinian coral, gram positif dan negatif, Bunaken, Morotai, Raja Ampat


Crystals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 789
Author(s):  
Shih-Fu Ou ◽  
Ya-Yun Zheng ◽  
Sin-Jen Lee ◽  
Shyi-Tien Chen ◽  
Chien-Hui Wu ◽  
...  

Graphene quantum dots, carbon nanomaterials with excellent fluorescence characteristics, are advantageous for use in biological systems owing to their small size, non-toxicity, and biocompatibility. We used the hydrothermal method to prepare functional N-doped carbon quantum dots (N-CQDs) from 1,3,6-trinitropyrene and analyzed their ability to fluorescently stain various bacteria. Our results showed that N-CQDs stain the cell septa and membrane of the Gram-negative bacteria Escherichia coli, Salmonellaenteritidis, and Vibrio parahaemolyticus and the Gram-positive bacteria Bacillus subtilis, Listeria monocytogenes, and Staphylococcus aureus. The optimal concentration of N-CQDs was approximately 500 ppm for Gram-negative bacteria and 1000 ppm for Gram-positive bacteria, and the exposure times varied with bacteria. N-Doped carbon quantum dots have better light stability and higher photobleaching resistance than the commercially available FM4-64. When excited at two different wavelengths, N-CQDs can emit light of both red and green wavelengths, making them ideal for bioimaging. They can also specifically stain Gram-positive and Gram-negative bacterial cell membranes. We developed an inexpensive, relatively easy, and bio-friendly method to synthesize an N-CQD composite. Additionally, they can serve as a universal bacterial membrane-staining dye, with better photobleaching resistance than commercial dyes.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tsukasa Tominari ◽  
Ayumi Sanada ◽  
Ryota Ichimaru ◽  
Chiho Matsumoto ◽  
Michiko Hirata ◽  
...  

AbstractPeriodontitis is an inflammatory disease associated with severe alveolar bone loss and is dominantly induced by lipopolysaccharide from Gram-negative bacteria; however, the role of Gram-positive bacteria in periodontal bone resorption remains unclear. In this study, we examined the effects of lipoteichoic acid (LTA), a major cell-wall factor of Gram-positive bacteria, on the progression of inflammatory alveolar bone loss in a model of periodontitis. In coculture of mouse primary osteoblasts and bone marrow cells, LTA induced osteoclast differentiation in a dose-dependent manner. LTA enhanced the production of PGE2 accompanying the upregulation of the mRNA expression of mPGES-1, COX-2 and RANKL in osteoblasts. The addition of indomethacin effectively blocked the LTA-induced osteoclast differentiation by suppressing the production of PGE2. Using ex vivo organ cultures of mouse alveolar bone, we found that LTA induced alveolar bone resorption and that this was suppressed by indomethacin. In an experimental model of periodontitis, LTA was locally injected into the mouse lower gingiva, and we clearly detected alveolar bone destruction using 3D-μCT. We herein demonstrate a new concept indicating that Gram-positive bacteria in addition to Gram-negative bacteria are associated with the progression of periodontal bone loss.


Children ◽  
2021 ◽  
Vol 8 (6) ◽  
pp. 436
Author(s):  
Giovanni Parente ◽  
Tommaso Gargano ◽  
Stefania Pavia ◽  
Chiara Cordola ◽  
Marzia Vastano ◽  
...  

Pyelonephritis (PN) represents an important cause of morbidity in the pediatric population, especially in uropathic patients. The aim of the study is to demonstrate differences between PNs of uropathic patients and PNs acquired in community in terms of uropathogens involved and antibiotic sensitivity; moreover, to identify a proper empiric therapeutic strategy. A retrospective study was conducted on antibiograms on urine cultures from PNs in vesicoureteral reflux (VUR) patients admitted to pediatric surgery department and from PNs in not VUR patients admitted to Pediatric Emergency Unit between 2010 and 2020. We recorded 58 PNs in 33 patients affected by VUR and 112 PNs in the not VUR group. The mean age of not VUR patients at the PN episode was 1.3 ± 2.6 years (range: 20 days of life–3 years), and almost all the urine cultures, 111 (99.1%), isolated Gram-negative bacteria and rarely, 1 (0.9%), Gram-positive bacteria. The Gram-negative uropathogens isolated were Escherichia coli (97%), Proteus mirabilis (2%), and Klebsiella spp. (1%). The only Gram-positive bacteria isolated was an Enterococcus faecalis. As regards the antibiograms, 96% of not VUR PNs responded to beta-lactams, 99% to aminoglycosides, and 80% to sulfonamides. For the VUR group, mean age was 3.0 years ± 3.0 years (range: 9 days of life–11 years) and mean number of episodes per patient was 2.0 ± 1.0 (range: 1–5); 83% of PNs were by Gram-negatives bacteria vs. 17% by Gram-positive: the most important Gram-negative bacteria were Pseudomonas aeruginosa (44%), Escherichia coli (27%), and Klebsiella spp. (12%), while Enterococcus spp. determined 90% of Gram-positive UTIs. Regimen ampicillin/ceftazidime (success rate: 72.0%) was compared to ampicillin/amikacin (success rate of 83.0%): no statistically significant difference was found (p = 0.09). The pathogens of PNs in uropathic patients are different from those of community-acquired PNs, and clinicians should be aware of their peculiar antibiotic susceptibility. An empiric therapy based on the association ampicillin + ceftazidime is therefore suggested.


2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Mashooq Ahmad Bhat ◽  
Mohamed A. Al-Omar ◽  
Ahmed M. Naglah ◽  
Abdul Arif Khan

A series of pyrazoles derived from the substituted enaminones were synthesized and were evaluated for antimicrobial activity. All the compounds were characterized by the spectral data and elemental analysis. The synthesized compounds were initially screened for their antimicrobial activity against ATCC 6538, NCTC 10400, NCTC 10418, and ATCC 27853. During initial screening, compounds (P1, P6, and P11) presented significant antimicrobial activity through disc diffusion assay. These compounds were further evaluated for antimicrobial activity at different time points against Gram-positive and Gram-negative bacteria and presented significant activity for 6 hours. The activity was found to be greater against Gram-positive bacteria. In contrast at 24 hours, the activity was found only against Gram-positive bacteria except compound (P11), showing activity against both types of bacteria. Compound (P11) was found to have highest activity against both Gram-positive and Gram-negative bacteria.


Sign in / Sign up

Export Citation Format

Share Document