scholarly journals Numerical simulation for increasing the sand mastic adaptation of repairing the breakwater

2021 ◽  
Vol 8 (4) ◽  
pp. 287-295
Author(s):  
Hyo Jun Jung ◽  
Young Jun Bang ◽  
Seung Oh Lee

As a breakwater gradually becomes obsolete, it becomes vulnerable to loss of its original functions and finally occurs corruption due to cavitation, scours inside, etc. The mortar grouting method, which has been in general applied in many cases, would invoke serious issues such as coastal environmental pollutions because of spilled-out cement before curing on the near sea. Thus, the sand mastic that utilizes the mastic asphalt becomes focused on as a substitute. However, the related study is hard to find in the domestic literature. In this study, therefore, the workability of sand mastic when filling up the cavitation inside a breakwater was evaluated with a 3-D numerical model, FLOW-3D. It was intended to propose the workability index (WI) of sand mastic based on the diffusion diameter. It has been shown that the temperature and the composition ratio of the asphalt are the most significant parameters on the rheologic characteristics of the sand mastic. As a result, it is recommended that the asphalt composition above 16% and the initial temperature above 150℃ when applying with a breakwater with inside cavitation.

1998 ◽  
Vol 26 ◽  
pp. 174-178 ◽  
Author(s):  
Peter Gauer

A physically based numerical model of drifting and blowing snow in three-dimensional terrain is developed. The model includes snow transport by saltation and suspension. As an example, a numerical simulation for an Alpine ridge is presented and compared with field measurements.


2013 ◽  
Vol 13 (9) ◽  
pp. 2223-2238 ◽  
Author(s):  
A. Boilley ◽  
J.-F. Mahfouf

Abstract. The Nice Côte d'Azur international airport is subject to horizontal low-level wind shears. Detecting and predicting these hazards is a major concern for aircraft security. A measurement campaign took place over the Nice airport in 2009 including 4 anemometers, 1 wind lidar and 1 wind profiler. Two wind shear events were observed during this measurement campaign. Numerical simulations were carried out with Meso-NH in a configuration compatible with near-real time applications to determine the ability of the numerical model to predict these events and to study the meteorological situations generating an horizontal wind shear. A comparison between numerical simulation and the observation dataset is conducted in this paper.


2003 ◽  
Author(s):  
B. X. Wang ◽  
H. Li ◽  
X. F. Peng ◽  
L. X. Yang

The development of a numerical model for analyzing the effect of the nano-particles’ Brownian motion on the heat transfer is described. By using the Maxwell velocity distribution relations to calculate the most possible velocity of fluid molecules at certain temperature gradient location around the nano-particle, the interaction between fluid molecules and one single nano-particle is analyzed and calculated. Based on this, a syntonic system is proposed and the coupled effect that Brownian motion of nano-particles has on fluid molecules is simulated. This is used to formulate a reasonable analytic method, facilitating laboratory study. The results provide the essential features of the heat transfer process, contributed by micro-convection to be considered.


2013 ◽  
Vol 554-557 ◽  
pp. 1375-1381 ◽  
Author(s):  
Laurence Giraud-Moreau ◽  
Abel Cherouat ◽  
Jie Zhang ◽  
Houman Borouchaki

Recently, new sheet metal forming technique, incremental forming has been introduced. It is based on using a single spherical tool, which is moved along CNC controlled tool path. During the incremental forming process, the sheet blank is fixed in sheet holder. The tool follows a certain tool path and progressively deforms the sheet. Nowadays, numerical simulations of metal forming are widely used by industry to predict the geometry of the part, stresses and strain during the forming process. Because incremental forming is a dieless process, it is perfectly suited for prototyping and small volume production [1, 2]. On the other hand, this process is very slow and therefore it can only be used when a slow series production is required. As the sheet incremental forming process is an emerging process which has a high industrial interest, scientific efforts are required in order to optimize the process and to increase the knowledge of this process through experimental studies and the development of accurate simulation models. In this paper, a comparison between numerical simulation and experimental results is realized in order to assess the suitability of the numerical model. The experimental investigation is realized using a three-axis CNC milling machine. The forming tool consists in a cylindrical rotating punch with a hemispherical head. A subroutine has been developed to describe the tool path from CAM procedure. A numerical model has been developed to simulate the sheet incremental forming process. The finite element code Abaqus explicit has been used. The simulation of the incremental forming process stays a complex task and the computation time is often prohibitive for many reasons. During this simulation, the blank is deformed by a sequence of small increments that requires many numerical increments to be performed. Moreover, the size of the tool diameter is generally very small compared to the size of the metal sheet and thus the contact zone between the tool and the sheet is limited. As the tool deforms almost every part of the sheet, small elements are required everywhere in the sheet resulting in a very high computation time. In this paper, an adaptive remeshing method has been used to simulate the incremental forming process. This strategy, based on adaptive refinement and coarsening procedures avoids having an initially fine mesh, resulting in an enormous computing time. Experiments have been carried out using aluminum alloy sheets. The final geometrical shape and the thickness profile have been measured and compared with the numerical results. These measurements have allowed validating the proposed numerical model. References [1] M. Yamashita, M. Grotoh, S.-Y. Atsumi, Numerical simulation of incremental forming of sheet metal, J. Processing Technology, No. 199 (2008), p. 163 172. [2] C. Henrard, A.M. Hbraken, A. Szekeres, J.R. Duflou, S. He, P. Van Houtte, Comparison of FEM Simulations for the Incremental Forming Process, Advanced Materials Research, 6-8 (2005), p. 533-542.


2021 ◽  
Vol 9 (5) ◽  
pp. 462
Author(s):  
Yuchen Shang ◽  
Juan J. Horrillo

In this study we investigated the performance of NACA 0012 hydrofoils aligned in tandem using parametric method and Neural Networks. We use the 2D viscous numerical model (STAR-CCM+) to simulate the hydrofoil system. To validate the numerical model, we modeled a single NACA 0012 configuration and compared it to experimental results. Results are found in concordance with the published experimental results. Then two NACA 0012 hydrofoils in tandem configuration were studied in relation to 788 combinations of the following parameters: spacing between two hydrofoils, angle of attack (AOA) of upstream hydrofoil and AOA of downstream hydrofoil. The effects exerted by these three parameters on the hydrodynamic coefficients Lift coefficient (CL), Drag Coefficient (CD) and Lift-Drag Ratio (LDR), are consistent with the behavior of the system. To establish a control system for the hydrofoil craft, a timely analysis of the hydrodynamic system is needed due to the computational resource constraints, analysis of a large combination and time consuming of the three parameters established. To provide a broader and faster way to predict the hydrodynamic performance of two hydrofoils in tandem configuration, an optimal artificial neural network (ANN) was trained using the large combination of three parameters generated from the numerical simulations. Regression analysis of the output of ANN was performed, and the results are consistent with numerical simulation with a correlation coefficient greater than 99.99%. The optimized spacing of 6.6c are suggested where the system has the lowest CD while obtaining the highest CL and LDR. The formula of the ANN was then presented, providing a reliable predicting method of hydrofoils in tandem configuration.


2012 ◽  
Vol 468-471 ◽  
pp. 2248-2254
Author(s):  
Qiang Li ◽  
Wan Kui Bu ◽  
Hui Xu ◽  
Xiao Bo Song

The numerical model of top coal drawing in gently inclined seam is built based on PFC2d software. By comparing with the theory of drawn-body movement law, it can be obtained that the shape of top coal drawn-body accords with the theory of random medium movement. The research results show that the form of the shape equation of top coal drawn-body is uniform while the top coal caving angle is different. On the other hand, with the difference of top coal caving angle and drawing height, the shape of top coal drawn-body is differential at the meso scale, which depends on the parameters of the shape equation of top coal drawn-body.


2014 ◽  
Vol 548-549 ◽  
pp. 1257-1264 ◽  
Author(s):  
Xiao Yong Suo

Taking ejection process of the ink droplets from ink-jet nozzle as the prototype, a similar numerical model of droplet ejection was established. The VOF method was applied to track the interface of droplet ejection process and it is shown that the numerical results simulated by the VOF method were accurate and reliable. Six kinds of liquid with different physical properties were chosen as the research object. The numerical results were analyzed and compared. Finally, the effect of the surface tension, viscosity and density on the droplet ejection process was discussed.


2018 ◽  
Vol 33 (5) ◽  
pp. 277-288 ◽  
Author(s):  
Katerina A. Beklemysheva ◽  
Georgiy K. Grigoriev ◽  
Nikolay S. Kulberg ◽  
Igor B. Petrov ◽  
Aleksey V. Vasyukov ◽  
...  

Abstract Transcranial ultrasound examination is hampered by the skull which acts as an irregular aberrator of the ultrasound signal. Numerical recovery of the ultrasound field can help in elimination of aberrations induced by the skull. In this paper, we address the simulation of medical phantom scanning through silicon aberrators with wave notching. The numerical model is based on the 2D acoustic equations which are solved by the wavefront construction raytracing method. Numerical B-scan images are compared with experimental B-scan images.


2014 ◽  
Vol 7 (2) ◽  
pp. 83-92 ◽  
Author(s):  
J. Fernández-Pato ◽  
P. García-Navarro

Abstract. The most commonly used hydraulic network models used in the drinking water community exclusively consider fully filled pipes. However, water flow numerical simulation in urban pipe systems may require to model transitions between surface flow and pressurized flow in steady and transient situations. The governing equations for both flow types are different and this must be taken into account in order to get a complete numerical model for solving dynamically transients. In this work, a numerical simulation tool is developed, capable of simulating pipe networks mainly unpressurized, with isolated points of pressurization. For this purpose, the mathematical model is reformulated by means of the Preissmann slot method. This technique provides a reasonable estimation of the water pressure in cases of pressurization. The numerical model is based on the first order Roe's scheme, in the frame of finite volume methods. The novelty of the method is that it is adapted to abrupt transient situations, with subcritical and supercritical flows. The validation has been done by means of several cases with analytic solutions or empirical laboratory data. It has also been applied to some more complex and realistic cases, like junctions or pipe networks.


Sign in / Sign up

Export Citation Format

Share Document