Structural behavior of recycled aggregates concrete filled steel tubular columns

2017 ◽  
Vol 8 (1) ◽  
pp. 17 ◽  
Author(s):  
Boshra Eltaly ◽  
Ahmed Bembawy ◽  
Nageh Meleka ◽  
Kameel Kandil

This paper presents an experimental and numerical investigation to determine the behavior of steel tubular columns filled with recycled aggregates concrete up to failure under constant axial compression loads. The experimental program included two steel tube columns, four recycled concrete columns and eight composite columns filled with different types of recycled coarse aggregates (granite and ceramic). Different percentages of recycled coarse aggregates: 0, 25 and 50 of the percentage of the coarse aggregates (dolomite) were used. The results of the numerical model that was employed by the finite element program, ANSYS, were compared with the experimental results. The results of the experimental study and the finite element analysis were compared with the design equations using different national building codes: AISC1999, AISC2005 and EC4. The results indicated that the recycled aggregates concrete infill columns have slightly lower but comparable ultimate capacities compared with the specimens filled with normal concrete.

2012 ◽  
Vol 204-208 ◽  
pp. 1224-1228
Author(s):  
Jun Fen Yang ◽  
Yi Liang Peng ◽  
Xia Bing Wei ◽  
Jin Bo Cui

Tube-plate joint is a frequently-used joint type in steel-tube tower, but the theoretical analysis and experimental investigation on tube-plate joint are absent both at home and abroad. In this paper, the ANSYS finite element program was used to simulate the bearing capacity and deformation condition of tube-plate joint with 1/2-stiffening ring. Eight calculation models were designed, and the width-thickness ratio was changed by changing the width or thickness of stiffening ring. The results indicate that the influence of different width-thickness ratio on tube-plate joint bearing capability is significant. By increasing the width or increasing the thickness of stiffening rings to improve the bearing capacity of the joint is a very effective way.


2013 ◽  
Vol 779-780 ◽  
pp. 352-355
Author(s):  
Zhi Gang Yan ◽  
Jun Yang ◽  
Hua Luo

In recent years, Reactive Powder Concrete (RPC) has been concerned by the structural engineers and researchers. RPC is a kind of cement-based composite which has ultra-high strength, high ductility and durability, however, it has great fragility. The fragility performance of RPC will be improved if RPC and steel are put together as RPC-filled steel tube circular stub columns. The aim of this paper is to develop accurate finite element models to simulate the behavior of RPC-filled steel tube circular long columns. The finite element program ABAQUS is used in the analysis. An extensive parametric study is conducted to investigate the effects of different slenderness ratio and confinement action on the strength and behavior of RPC-filled steel tube circular long columns. The results obtained from the models are verified against the results of the tests. The results show that the rising part of load-strain curves are in good agreements with experiment results.


2013 ◽  
Vol 321-324 ◽  
pp. 234-238
Author(s):  
Li Jian

The experiment on joints of concrete filled thin-walled steel tube and the composite beam is carried out in 8 specimens, and mechanics performance of all type joints is concluded in general. The test results indicate that each joint has higher bearing capacity and better ductility performance. Solid65 and Shell181 Elements of ANSYS finite element program are adopted to simulate concrete and thin-walled steel sheet of composite beams and columns. Calculation results in theories proved conformity with the test in primary.


2014 ◽  
Vol 501-504 ◽  
pp. 731-735
Author(s):  
Li Zhang ◽  
Kang Li

This paper analyzes the influence degree of related design parameters of wire-mesh frame wallboard on deformation through finite element program, providing theoretical basis for the design and test of steel wire rack energy-saving wallboard.


Author(s):  
Makoto Tanabe ◽  
Hajime Wakui ◽  
Nobuyuki Matsumoto

Abstract A finite element formulation to solve the dynamic behavior of high-speed Shinkansen cars, rail, and bridge is given. A mechanical model to express the interaction between wheel and rail is described, in which the impact of the rail on the flange of wheel is also considered. The bridge is modeled by using various finite elements such as shell, beam, solid, spring, and mass. The equations of motions of bridge and Shinkansen cars are solved under the constitutive and constraint equations to express the interaction between rail and wheel. Numerical method based on a modal transformation to get the dynamic response effectively is discussed. A finite element program for the dynamic response analysis of Shinkansen cars, rail, and bridge at the high-speed running has been developed. Numerical examples are also demonstrated.


2011 ◽  
Vol 225-226 ◽  
pp. 823-826
Author(s):  
Yu Feng Zhang ◽  
Guo Fu Sun

As a part of virtual simulation of construction processes, this paper deals with the quantitative risk analysis for the construction phases of the CFST arch bridge. The main objectives of the study are to evaluate the risks by considering an ultimate limit state for the fracture of cable wires and to evaluate the risks for a limit state for the erection control during construction stages. Many researches have been evaluated the safety of constructed bridges, the uncertainties of construction phases have been ignored. This paper adopts the 3D finite element program ANSYS to establish the space model of CFST Arch Bridge, and to calculate the linear, the geometrical nonlinear and the double nonlinear buckling safety factors under the six different lode cases. Then the bridge’s risks are evaluated according to the results calculated which provide a reference for design of similar project.


1991 ◽  
Vol 226 ◽  
Author(s):  
Yi-Hsin Pao ◽  
Kuan-Luen Chen ◽  
An-Yu Kuo

AbstractA nonlinear and time dependent finite element analysis was performed on two surface mounted electronic devices subjected to thermal cycling. Constitutive equations accounting for both plasticity and creep for 37Pb/63Sn and 90Pb/10Sn solders were assumed and implemented in a finite element program ABAQUS with the aid of a user subroutine. The FE results of 37Pb/63Sn solder joints were in reasonably good agreement with the experimental data by Hall [19]. In the case of 9OPb/1OSn solder in a multilayered transistor stack, the FE results showed the existence of strong peel stress near the free edge of the joint, in addition to the anticipated shear stress. The effect of such peel stress on the crack initiation and growth as a result of thermal cycling was discussed, together with the singular behavior of both shear and peel stresses near the free edge.


2017 ◽  
Vol 24 (3) ◽  
pp. 415-422 ◽  
Author(s):  
Ke Chun Shen ◽  
Guang Pan ◽  
JiangFeng Lu

AbstractThe buckling and layer failure characteristics of composite laminated cylinders subjected to hydrostatic pressure were investigated through finite element analysis for underwater vehicle application. The Tsai-Wu failure criteria were used as the failure criteria for the buckling analysis. A sensitivity analysis was conducted to research the influence of the number of elements on the critical buckling pressure. ANSYS, a finite element program, successfully predicted the buckling pressure with 5.3–27.8% (linear) and 0.3–22.5% (nonlinear) deviation from experimental results. The analysis results showed that the cylinders can carry more pressure after a slight decrease in pressure and recovery of the supporting load. For layer failure analysis, it was found that the failure that occurred in the 0° layer was more serious than that in the 90° layer within the neighboring layers at the inner layers (nos. 1–7) and outer layers (nos. 8–24).


2003 ◽  
Vol 125 (4) ◽  
pp. 393-402 ◽  
Author(s):  
S. A. Karamanos ◽  
E. Giakoumatos ◽  
A. M. Gresnigt

The paper investigates the response of elbows under in-plane bending and pressure, through nonlinear finite element tools, supported by experimental results from real-scale tests. The finite element analysis is mainly based on a nonlinear three-node “tube element,” capable of describing elbow deformation in a rigorous manner, considering geometric and material nonlinearities. Furthermore, a nonlinear shell element from a general-purpose finite element program is employed in some special cases. Numerical results are compared with experimental data from steel elbow specimens. The comparison allows the investigation of important issues regarding deformation and ultimate capacity of elbows, with emphasis on relatively thin-walled elbows. The results demonstrate the effects of pressure and the influence of straight pipe segments. Finally, using the numerical tools, failure of elbows under bending moments is examined (cross-sectional flattening or local buckling), and reference to experimental observations is made.


2014 ◽  
Vol 578-579 ◽  
pp. 269-273
Author(s):  
Bing Li ◽  
Shuang Meng ◽  
Wei Hao Wang

The objective of this paper is to provide the references through finite element analysis for steel tube concrete beams bearing capacity settlement. The paper verified the correctness of the constitutive relation of concrete, the correctness and the model through the establishment of the concrete damaged plasticity model with recycled concrete details in the finite element analysis software ABAQUS. Then the stress characteristics of steel pipe concrete beam in bending condition under different substitution rate could be found through model calculation. The result is that the mid span bending - strain curve from simulation agreed to the experimental results, and the model is proved correct. Finally it came to the conclusions. Other things being equal, the recycled concrete filled square tube changed a lot in bending state when the substitution rate grows, but it didn’t occur to the circular one. In the meantime, the writer proposed the conjecture on the bearing capacity calculation of the two types of structure.


Sign in / Sign up

Export Citation Format

Share Document