scholarly journals Estimation of the effect of lithium salts on cytokine production by blood cells in in vitro experiments

2021 ◽  
Vol 20 (3) ◽  
pp. 21-28
Author(s):  
T. R. Vetlugina ◽  
E. V. Epimakhova ◽  
D. N. Savochkina ◽  
E. V. Plotnikov ◽  
A. S. Boiko ◽  
...  

Aim. To study the effects of lithium salts on production of cytokines by immunocompetent cells in the whole-blood culture of patients with alcohol dependence and affective disorders.Materials and methods. The study materials were blood samples from 25 patients with alcohol dependence (AD) and 12 patients with bipolar disorder (BD). Blood diluted 1:1 with complete RPMI-1640 medium (Gibco, UK) was added to the wells of the culture plate, then new lithium salts (succinate, fumarate, pyruvate, ascorbate) and a reference salt – lithium carbonate at a final concentration of 1.2 mmol / l per lithium ion – were added. In parallel, control samples without lithium salts were tested; the samples were incubated for a day. The concentration of cytokines (interferon (IFN) γ, interleukin (IL)-1β, IL-2, IL-4, IL-6, IL-8, IL-10, IL-17A, tumor necrosis factor (TNF) α) was determined in the culture supernatants on the MAGPIX multiplex analyzer (Luminex, USA) (Center for Collective Use “Medical Genomics”, Tomsk NRMC) using the Human Cytokine / Chemokine Magnetic Bead Panel (Merck, Germany).Results. All lithium salts had a unidirectional effect on the production of cytokines by immunocompetent cells (ICC), except for lithium ascorbate and IL-8. The concentrations of cytokines in the supernatants of loaded and control samples (spontaneous production) were comparable, which indicates an absence of stimulating or suppressing effects of salts on the functional activity of ICC under the experimental conditions. The effect of lithium ascorbate as an IL-8 inducer was detected: the production of IL-8 induced by lithium ascorbate was 2.3–2.5 times higher than its spontaneous production.Conclusion. The obtained results, as well as the previously revealed antioxidant and cytoprotective properties of new lithium salts, confirmed that they are promising for development of pharmacological agents with combined action.

2019 ◽  
Vol 65 (1) ◽  
pp. 28-32 ◽  
Author(s):  
V.D. Prokopieva ◽  
E.V. Plotnikov ◽  
E.G. Yarygina ◽  
N.A. Bokhan

Organic lithium salts containing anionic components (succinate, fumarate, pyruvate and antioxidant ascorbate) were tested for protection of blood plasma proteins and lipids against ethanol-induced oxidation in vitro. We used normothymic lithium carbonate and well-known antioxidant dipeptide carnosine (b-alanyl-L-histidine) as the reference drugs. The oxidized proteins and lipids were determined by the level of carbonylated proteins (CP) and TBA-reactive products (TBA-RP), respectively. In alcoholic patients the level of oxidized proteins and lipids was higher than in healthy persons. Incubation of blood with ethanol resulted in an increase in oxidized proteins and lipids in blood plasma of healthy persons but had no influence on the level of CP and TBA-RP in blood plasma of alcoholic patients. Lithium carbonate, lithium ascorbate, and lithium succinate exhibited protective action against ethanol-induced oxidation of biomolecules of blood plasma of healthy people. These effects were comparable with carnosine action. The studied compounds had no effect on the level of CP and TBA-RP of blood plasma of alcoholic patients.


2017 ◽  
Vol 41 (S1) ◽  
pp. S758-S759
Author(s):  
V. Prokopieva ◽  
E. Yarygina ◽  
E. Plotnikov

IntroductionThe creation of new lithium compounds with antioxidant activity is relevant problem for psychiatry. The aim of this work was study of the protective effect of lithium salts against ethanol-induced oxidative damage to proteins and lipids of human blood plasma in vitro.MethodsWe used lithium ascorbate and lithium carbonate 0.6 mmol/L which correspond to the therapeutic dose (in terms of lithium ions). Antioxidant carnosine (β-Ala-L-His) was used as comparison drug. We used the blood of 12 healthy donors. The heparinized blood samples were incubated in presence of tested preparations for one hour at 37 °C. The final ethanol concentration in samples was 0.5%. Oxidative modification of proteins was determined as the level of carbonylated proteins with 2.4–dinitrophenilhydrazine, lipid peroxidation products–as the level of TBA-reactive products by spectrometry. Statistical analysis was performed with “Statistika 10” program.ResultsThe addition of ethanol in the blood led to a significant increase in carbonylated proteins and TBA-reactive products in the plasma (carbonylated proteins: without ethanol 0.26 ± 0.01 nmol/mg of protein; with ethanol 0.33 ± 0.02 nmol/mg; TBA-reactive products: without–3.2 ± 0.1 nmol/mL; with–4.0 ± 0.2 nmol/mL, P < 0.05). In the presence of carnosine such increase of oxidized products of biomolecules is not observed, i.e. carnosine had a protective effect against ethanol-induced oxidative damage. Lithium ascorbate showed a protective effect like carnosine. Lithium carbonate revealed no detectable influence on biomolecules in the conditions of our experiment.ConclusionLithium ascorbate has a protective effect on blood plasma proteins and lipids under ethanol-induced oxidative damage of biomolecules.Disclosure of interestThe authors have not supplied their declaration of competing interest.


Author(s):  
D. Chrétien ◽  
D. Job ◽  
R.H. Wade

Microtubules are filamentary structures found in the cytoplasm of eukaryotic cells, where, together with actin and intermediate filaments, they form the components of the cytoskeleton. They have many functions and show various levels of structural complexity as witnessed by the singlet, doublet and triplet structures involved in the architecture of centrioles, basal bodies, cilia and flagella. The accepted microtubule model consists of a 25 nm diameter hollow tube with a wall made up of 13 paraxial protofilaments (pf). Each pf is a string of aligned tubulin dimers. Some results have suggested that the pfs follow a superhelix. To understand how microtubules function in the cell an accurate model of the surface lattice is one of the requirements. For example the 9x2 architecture of the axoneme will depend on the organisation of its component microtubules. We should also note that microtubules with different numbers of pfs have been observed in thin sections of cellular and of in-vitro material. An outstanding question is how does the surface lattice adjust to these different pf numbers?We have been using cryo-electron microscopy of frozen-hydrated samples to study in-vitro assembled microtubules. The experimental conditions are described in detail in this reference. The results obtained in conjunction with thin sections of similar specimens and with axoneme outer doublet fragments have already allowed us to characterise the image contrast of 13, 14 and 15 pf microtubules on the basis of the measured image widths, of the the image contrast symmetry and of the amplitude and phase behaviour along the equator in the computed Fourier transforms. The contrast variations along individual microtubule images can be interpreted in terms of the geometry of the microtubule surface lattice. We can extend these results and make some reasonable predictions about the probable surface lattices in the case of other pf numbers, see Table 1. Figure 1 shows observed images with which these predictions can be compared.


1981 ◽  
Vol 45 (03) ◽  
pp. 290-293 ◽  
Author(s):  
Peter H Levine ◽  
Danielle G Sladdin ◽  
Norman I Krinsky

SummaryIn the course of studying the effects on platelets of the oxidant species superoxide (O- 2), Of was generated by the interaction of xanthine oxidase plus xanthine. Surprisingly, gel-filtered platelets, when exposed to xanthine oxidase in the absence of xanthine substrate, were found to generate superoxide (O- 2), as determined by the reduction of added cytochrome c and by the inhibition of this reduction in the presence of superoxide dismutase.In addition to generating Of, the xanthine oxidase-treated platelets display both aggregation and evidence of the release reaction. This xanthine oxidase induced aggreagtion is not inhibited by the addition of either superoxide dismutase or cytochrome c, suggesting that it is due to either a further metabolite of O- 2, or that O- 2 itself exerts no important direct effect on platelet function under these experimental conditions. The ability of Of to modulate platelet reactions in vivo or in vitro remains in doubt, and xanthine oxidase is an unsuitable source of O- 2 in platelet studies because of its own effects on platelets.


1997 ◽  
Vol 77 (05) ◽  
pp. 0975-0980 ◽  
Author(s):  
Angel Gálvez ◽  
Goretti Gómez-Ortiz ◽  
Maribel Díaz-Ricart ◽  
Ginés Escolar ◽  
Rogelio González-Sarmiento ◽  
...  

SummaryThe effect of desmopressin (DDAVP) on thrombogenicity, expression of tissue factor and procoagulant activity (PCA) of extracellular matrix (ECM) generated by human umbilical vein endothelial cells cultures (HUVEC), was studied under different experimental conditions. HUVEC were incubated with DDAVP (1, 5 and 30 ng/ml) and then detached from their ECM. The reactivity towards platelets of this ECM was tested in a perfusion system. Coverslips covered with DD A VP-treated ECMs were inserted in a parallel-plate chamber and exposed to normal blood anticoagulated with low molecular weight heparin (Fragmin®, 20 U/ml). Perfusions were run for 5 min at a shear rate of 800 s1. Deposition of platelets on ECMs was significantly increased with respect to control ECMs when DDAVP was used at 5 and 30 ng/ml (p <0.05 and p <0.01 respectively). The increase in platelet deposition was prevented by incubation of ECMs with an antibody against human tissue factor prior to perfusion. Immunofluorescence studies positively detected tissue factor antigen on DDAVP derived ECMs. A chromogenic assay performed under standardized conditions revealed a statistically significant increase in the procoagulant activity of the ECMs produced by ECs incubated with 30 ng/ml DDAVP (p <0.01 vs. control samples). Northern blot analysis revealed increased levels of tissue factor mRNA in extracts from ECs exposed to DDAVP. Our data indicate that DDAVP in vitro enhances platelet adhesion to the ECMs through increased expression of tissue factor. A similar increase in the expression of tissue factor might contribute to the in vivo hemostatic effect of DDAVP.


2019 ◽  
Vol 26 (5) ◽  
pp. 339-347 ◽  
Author(s):  
Dilani G. Gamage ◽  
Ajith Gunaratne ◽  
Gopal R. Periyannan ◽  
Timothy G. Russell

Background: The dipeptide composition-based Instability Index (II) is one of the protein primary structure-dependent methods available for in vivo protein stability predictions. As per this method, proteins with II value below 40 are stable proteins. Intracellular protein stability principles guided the original development of the II method. However, the use of the II method for in vitro protein stability predictions raises questions about the validity of applying the II method under experimental conditions that are different from the in vivo setting. Objective: The aim of this study is to experimentally test the validity of the use of II as an in vitro protein stability predictor. Methods: A representative protein CCM (CCM - Caulobacter crescentus metalloprotein) that rapidly degrades under in vitro conditions was used to probe the dipeptide sequence-dependent degradation properties of CCM by generating CCM mutants to represent stable and unstable II values. A comparative degradation analysis was carried out under in vitro conditions using wildtype CCM, CCM mutants and two other candidate proteins: metallo-β-lactamase L1 and α -S1- casein representing stable, borderline stable/unstable, and unstable proteins as per the II predictions. The effect of temperature and a protein stabilizing agent on CCM degradation was also tested. Results: Data support the dipeptide composition-dependent protein stability/instability in wt-CCM and mutants as predicted by the II method under in vitro conditions. However, the II failed to accurately represent the stability of other tested proteins. Data indicate the influence of protein environmental factors on the autoproteolysis of proteins. Conclusion: Broader application of the II method for the prediction of protein stability under in vitro conditions is questionable as the stability of the protein may be dependent not only on the intrinsic nature of the protein but also on the conditions of the protein milieu.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Skaidre Jankovskaja ◽  
Johan Engblom ◽  
Melinda Rezeli ◽  
György Marko-Varga ◽  
Tautgirdas Ruzgas ◽  
...  

AbstractThe tryptophan to kynurenine ratio (Trp/Kyn) has been proposed as a cancer biomarker. Non-invasive topical sampling of Trp/Kyn can therefore serve as a promising concept for skin cancer diagnostics. By performing in vitro pig skin permeability studies, we conclude that non-invasive topical sampling of Trp and Kyn is feasible. We explore the influence of different experimental conditions, which are relevant for the clinical in vivo setting, such as pH variations, sampling time, and microbial degradation of Trp and Kyn. The permeabilities of Trp and Kyn are overall similar. However, the permeated Trp/Kyn ratio is generally higher than unity due to endogenous Trp, which should be taken into account to obtain a non-biased Trp/Kyn ratio accurately reflecting systemic concentrations. Additionally, prolonged sampling time is associated with bacterial Trp and Kyn degradation and should be considered in a clinical setting. Finally, the experimental results are supported by the four permeation pathways model, predicting that the hydrophilic Trp and Kyn molecules mainly permeate through lipid defects (i.e., the porous pathway). However, the hydrophobic indole ring of Trp is suggested to result in a small but noticeable relative increase of Trp diffusion via pathways across the SC lipid lamellae, while the shunt pathway is proposed to slightly favor permeation of Kyn relative to Trp.


2021 ◽  
Vol 9 (6) ◽  
pp. 1209
Author(s):  
Nuria Montes-Osuna ◽  
Carmen Gómez-Lama Cabanás ◽  
Antonio Valverde-Corredor ◽  
Garikoitz Legarda ◽  
Pilar Prieto ◽  
...  

Stress caused by drought and salinity may compromise growth and productivity of olive (Olea europaea L.) tree crops. Several studies have reported the use of beneficial rhizobacteria to alleviate symptoms produced by these stresses, which is attributed in some cases to the activity of 1-aminocyclopropane-1-carboxylic acid deaminase (ACD). A collection of beneficial olive rhizobacteria was in vitro screened for ACD activity. Pseudomonas sp. PICF6 displayed this phenotype and sequencing of its genome confirmed the presence of an acdS gene. In contrast, the well-known root endophyte and biocontrol agent Pseudomonas simiae PICF7 was defective in ACD activity, even though the presence of an ACD-coding gene was earlier predicted in its genome. In this study, an unidentified deaminase was confirmed instead. Greenhouse experiments with olive ‘Picual’ plants inoculated either with PICF6 or PICF7, or co-inoculated with both strains, and subjected to drought or salt stress were carried out. Several physiological and biochemical parameters increased in stressed plants (i.e., stomatal conductance and flavonoids content), regardless of whether or not they were previously bacterized. Results showed that neither PICF6 (ACD positive) nor PICF7 (ACD negative) lessened the negative effects caused by the abiotic stresses tested, at least under our experimental conditions.


2021 ◽  
Vol 13 (3) ◽  
pp. 1251
Author(s):  
Yichi Zhang ◽  
Zhiliang Dong ◽  
Sen Liu ◽  
Peixiang Jiang ◽  
Cuizhi Zhang ◽  
...  

As the raw material of lithium-ion batteries, lithium carbonate plays an important role in the development of new energy field. Due to the extremely uneven distribution of lithium resources in the world, the security of supply in countries with less say would be greatly threatened if trade restrictions or other accidents occurred in large-scale exporting countries. It is of great significance to help these countries find new partners based on the existing trade topology. This study uses the link prediction method, based on the perspective of the topological structure of trade networks in various countries and trade rules, and eliminates the influence of large-scale lithium carbonate exporting countries on the lithium carbonate trade of other countries, to find potential lithium carbonate trade links among importing and small-scale exporting countries, and summarizes three trade rules: (1) in potential relationships involving two net importers, a relationship involving either China or the Netherlands is more likely to occur; (2) for all potential relationships, a relationship that actually occurred for more than two years in the period in 2009–2018 is more likely to occur in the future; and (3) potential relationships pairing a net exporter with a net importer are more likely to occur than other country combinations. The results show that over the next five to six years, Denmark and Italy, Netherlands and South Africa, Turkey and USA are most likely to have a lithium carbonate trading relationship, while Slovenia and USA, and Belgium and Thailand are the least likely to trade lithium carbonate. Through this study, we can strengthen the supply security of lithium carbonate resources in international trade, and provide international trade policy recommendations for the governments of importing countries and small-scale exporting countries.


2021 ◽  
pp. 1-9
Author(s):  
Etsuo Niki

Reactive oxygen and nitrogen species have been implicated in the onset and progression of various diseases and the role of antioxidants in the maintenance of health and prevention of diseases has received much attention. The action and effect of antioxidants have been studied extensively under different reaction conditions in multiple media. The antioxidant effects are determined by many factors. This review aims to discuss several important issues that should be considered for determination of experimental conditions and interpretation of experimental results in order to understand the beneficial effects and limit of antioxidants against detrimental oxidation of biological molecules. Emphasis was laid on cell culture experiments and effects of diversity of multiple oxidants on antioxidant efficacy.


Sign in / Sign up

Export Citation Format

Share Document