scholarly journals Scope of Improvement in Soil Fertility Build-up with Khejri Based Crop Production Systems under Hot Arid Agro-Climate

Author(s):  
Dinesh Kumar ◽  
D.K. Samadia ◽  
M.K. Jatav ◽  
S.R. Meena ◽  
B.D. Sharma ◽  
...  
2011 ◽  
Vol 149 (S1) ◽  
pp. 1-7 ◽  
Author(s):  
I. R. CRUTE ◽  
J. F. MUIR

SUMMARYTo meet the increasing global demand for food that is predicted over the coming decades it will be necessary to increase productivity and to do this in a way that is sustainable and efficient in its use of resources. Productivity is currently determined by the intrinsic genetic potential of the domestic plants and animals on which mankind is dependent as well as by components of the biophysical environment (temperature, water availability and quality, soil fertility, parasites, pathogens, weeds) from which terrestrial or aquatic food production is derived. Within certain limits, it is possible to manipulate plant and animal genotypes, the production environment, and the inevitable interaction between these factors, to relax constraints on productivity and potential output. Looking to the future, increased scientific understanding will undoubtedly permit this manipulation to be achieved more effectively, thus enabling the scale of production to be elevated predictably while reducing reliance on non-renewable inputs and limiting the use of more forest, grassland, wetland or coastal margin. The present paper introduces a collection of reviews that were commissioned as part of the UK's Government Office of Science Foresight Project on Global Food and Farming Futures which reports early in 2011. The reviews explore opportunities for advances in science and technology to impact in coming decades on the sustainable productivity of terrestrial and aquatic food production systems. Collectively, they describe many of the approaches currently being considered to define, remove or relax the different genetic or environmental constraints limiting sustainable food production. These include: potential impacts of climate change on aquatic systems, the application of biotechnology, genetics and the development of systems to improve livestock, fish and crop production; approaches to the management of parasites and pathogens; weed control in crops; management of soil fertility; approaches to countering problems of water shortage; reducing post-harvest wastage; the role of advanced engineering and the potential for increasing food production in urban environments.


2016 ◽  
Vol 8 (12) ◽  
pp. 33
Author(s):  
Madegwa Yvonne ◽  
Onwonga Richard ◽  
Shibairo Solomon ◽  
Karuku George

Eastern Kenya, a semi-arid region, is characterized by low and erratic rainfall, high temperatures, and low soil fertility. Climate change has further worsened the situation leading to frequent droughts and hence increased food insecurity. Traditional crops like finger millet are possible solutions to combating changing climate due to their drought resistance nature, ability to produce high yields with little inputs and high nutritional content. It is against this backdrop that a survey was carried out in Mwala and Katangi divisions of Machakos and Kitui counties, respectively, to assess farmer’s perception on climate change, coping and adaptation mechanisms in finger millet production systems in smallholder farming systems of lower eastern Kenya. Data was collected, using semi-structured questionnaire, from 120 farmers i.e. 60 in each division. A stratified random sampling procedure, with location as a stratum was used to select respondent’s households. A computer random number generator was used to select number of households in each stratum. Maize and beans were the most popular crops grown by over 98% of the farmers in both sub-counties. Farmers also grew drought tolerant legumes; cow peas, green grams pigeon peas and cereals; sorghum and finger millet. Temperature rise was ranked highest with 88% and 98%, followed by prolonged drought with 70% and 72%, irregular rainfall at 69% and 81% and increased wind intensity at 22% and 28% at Machakos and Kitui, respectively, as aspects of climate change perceived by farmers. Farmers had taken up early planting at 88.6% and 93.7%, use of organic inputs at 89% and 92%, introduced new tillage practices, by applying ridges and furrows and tied ridges at 45% and 54%, and by adopting irrigation at 13%, and 9%, as coping strategies to climate change in Machakos and Kitui, respectively.It can be concluded that farmers in Machakos and Kitui are aware of climate change and its negative effects on crop production. In a bid to minimize crop loss and food insecurity, they have taken up various soil moisture conservation and soil fertility enhancement technologies.


Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1152
Author(s):  
Rebekah Waller ◽  
Murat Kacira ◽  
Esther Magadley ◽  
Meir Teitel ◽  
Ibrahim Yehia

Recognizing the growing interest in the application of organic photovoltaics (OPVs) with greenhouse crop production systems, in this study we used flexible, roll-to-roll printed, semi-transparent OPV arrays as a roof shade for a greenhouse hydroponic tomato production system during a spring and summer production season in the arid southwestern U.S. The wavelength-selective OPV arrays were installed in a contiguous area on a section of the greenhouse roof, decreasing the transmittance of all solar radiation wavelengths and photosynthetically active radiation (PAR) wavelengths (400–700 nm) to the OPV-shaded area by approximately 40% and 37%, respectively. Microclimate conditions and tomato crop growth and yield parameters were measured in both the OPV-shaded (‘OPV’) and non-OPV-shaded (‘Control’) sections of the greenhouse. The OPV shade stabilized the canopy temperature during midday periods with the highest solar radiation intensities, performing the function of a conventional shading method. Although delayed fruit development and ripening in the OPV section resulted in lower total yields compared to the Control section (24.6 kg m−2 and 27.7 kg m−2, respectively), after the fourth (of 10 total) harvests, the average weekly yield, fruit number, and fruit mass were not significantly different between the treatment (OPV-shaded) and control group. Light use efficiency (LUE), defined as the ratio of total fruit yield to accumulated PAR received by the plant canopy, was nearly twice as high as the Control section, with 21.4 g of fruit per mole of PAR for plants in the OPV-covered section compared to 10.1 g in the Control section. Overall, this study demonstrated that the use of semi-transparent OPVs as a seasonal shade element for greenhouse production in a high-light region is feasible. However, a higher transmission of PAR and greater OPV device efficiency and durability could make OPV shades more economically viable, providing a desirable solution for co-located greenhouse crop production and renewable energy generation in hot and high-light intensity regions.


Author(s):  
Daniel P. Roberts ◽  
Nicholas M. Short ◽  
James Sill ◽  
Dilip K. Lakshman ◽  
Xiaojia Hu ◽  
...  

AbstractThe agricultural community is confronted with dual challenges; increasing production of nutritionally dense food and decreasing the impacts of these crop production systems on the land, water, and climate. Control of plant pathogens will figure prominently in meeting these challenges as plant diseases cause significant yield and economic losses to crops responsible for feeding a large portion of the world population. New approaches and technologies to enhance sustainability of crop production systems and, importantly, plant disease control need to be developed and adopted. By leveraging advanced geoinformatic techniques, advances in computing and sensing infrastructure (e.g., cloud-based, big data-driven applications) will aid in the monitoring and management of pesticides and biologicals, such as cover crops and beneficial microbes, to reduce the impact of plant disease control and cropping systems on the environment. This includes geospatial tools being developed to aid the farmer in managing cropping system and disease management strategies that are more sustainable but increasingly complex. Geoinformatics and cloud-based, big data-driven applications are also being enlisted to speed up crop germplasm improvement; crop germplasm that has enhanced tolerance to pathogens and abiotic stress and is in tune with different cropping systems and environmental conditions is needed. Finally, advanced geoinformatic techniques and advances in computing infrastructure allow a more collaborative framework amongst scientists, policymakers, and the agricultural community to speed the development, transfer, and adoption of these sustainable technologies.


2021 ◽  
pp. 1-25
Author(s):  
Mandy Bish ◽  
Brian Dintelmann ◽  
Eric Oseland ◽  
Jacob Vaughn ◽  
Kevin Bradley

Abstract The evolution of herbicide-resistant weeds has resulted in the necessity to integrate non-chemical control methods with chemicals for effective management in crop production systems. In soybean, control of the pigweed species, particularly herbicide-resistant waterhemp and Palmer amaranth, have become predominant concerns. Cereal rye planted as a winter cover crop can effectively suppress early-season weed emergence in soybean, including waterhemp, when planted at a rate of 123 kg ha−1. The objectives of this study were to determine the effects of different cereal rye seeding rates (0, 34, 56, 79, 110, and 123 kg ha−1) on early-season waterhemp suppression and soybean growth and yield. Soybean was planted into fall-seeded cereal rye, which was terminated within four days of soybean planting. The experiment was conducted over the 2018, 2019, and 2020 growing seasons in Columbia, Missouri. Effects of cereal rye on early-season waterhemp suppression varied by year and were most consistent at 56 kg ha−1 or higher seeding rates. Linear regression analysis of cereal rye biomass, height, or stand at soybean planting showed inverse relationships with waterhemp emergence. No adverse effects to soybean growth or yield were observed at any of the cereal rye seeding rates relative to plots that lacked cereal rye cover. Result differences among the years suggest that the successfulness of cereal rye on suppression of early-season waterhemp emergence is likely influenced by the amount of waterhemp seed present in the soil seed bank.


Agriculture ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 626
Author(s):  
Tinashe Zenda ◽  
Songtao Liu ◽  
Anyi Dong ◽  
Huijun Duan

Sulphur plays crucial roles in plant growth and development, with its functions ranging from being a structural constituent of macro-biomolecules to modulating several physiological processes and tolerance to abiotic stresses. In spite of these numerous sulphur roles being well acknowledged, agriculture has paid scant regard for sulphur nutrition, until only recently. Serious problems related to soil sulphur deficiencies have emerged and the intensification of food, fiber, and animal production is escalating to feed the ever-increasing human population. In the wake of huge demand for high quality cereal and vegetable diets, sulphur can play a key role in augmenting the production, productivity, and quality of crops. Additionally, in light of the emerging problems of soil fertility exhaustion and climate change-exacerbated environmental stresses, sulphur assumes special importance in crop production, particularly under intensively cropped areas. Here, citing several relevant examples, we highlight, in addition to its plant biological and metabolism functions, how sulphur can significantly enhance crop productivity and quality, as well as acclimation to abiotic stresses. By this appraisal, we also aim to stimulate readers interests in crop sulphur research by providing priorities for future pursuance, including bettering our understanding of the molecular processes and dynamics of sulphur availability and utilization in plants, dissecting the role of soil rhizospherical microbes in plant sulphur transformations, enhancing plant phenotyping and diagnosis for nutrient deficiencies, and matching site-specific crop sulphur demands with fertilizer amendments in order to reduce nutrient use inefficiencies in both crop and livestock production systems. This will facilitate the proper utilization of sulphur in crop production and eventually enhance sustainable and environmentally friend food production.


2017 ◽  
Vol 32 (2) ◽  
pp. 103-108 ◽  
Author(s):  
Michael J. Walsh ◽  
John C. Broster ◽  
Stephen B. Powles

AbstractIn Australia, widespread evolution of multi-resistant weed populations has driven the development and adoption of harvest weed seed control (HWSC). However, due to incompatibility of commonly used HWSC systems with highly productive conservation cropping systems, better HWSC systems are in demand. This study aimed to evaluate the efficacy of the integrated Harrington Seed Destructor (iHSD) mill on the seeds of Australia’s major crop weeds during wheat chaff processing. Also examined were the impacts of chaff type and moisture content on weed seed destruction efficacy. Initially, the iHSD mill speed of 3,000 rpm was identified as the most effective at destroying rigid ryegrass seeds present in wheat chaff. Subsequent testing determined that the iHSD mill was highly effective (>95% seed kill) on all Australian crop weeds examined. Rigid ryegrass seed kill was found to be highest for lupin chaff and lowest in barley, with wheat and canola chaff intermediate. Similarly, wheat chaff moisture reduced rigid ryegrass seed kill when moisture level exceeded 12%. The broad potential of the iHSD mill was evident, in that the reductions in efficacy due to wide-ranging differences in chaff type and moisture content were relatively small (≤10%). The results from these studies confirm the high efficacy and widespread suitability of the iHSD for use in Australian crop production systems. Additionally, as this system allows the conservation of all harvest residues, it is the best HWSC technique for conservation cropping systems.


2005 ◽  
Vol 34 (3) ◽  
pp. 181-187 ◽  
Author(s):  
Alan Cork ◽  
Malcolm J. Iles ◽  
Nazira Q. Kamal ◽  
J.C. Saha Choudhury ◽  
M. Mahbub Rahman ◽  
...  

Bangladesh is essentially self-sufficient in rice as a result of the successful adoption of new high-yielding varieties and irrigated summer production over traditional deep-water cultivation practices. The sustainability of the cropping system depends on farmers adopting integrated pest management (IPM) practices in preference to relying solely on insecticides for pest and disease control. Yet insecticide consumption in rice is increasing, in common with other crop-production systems in Bangladesh. It is probably only the poor economic returns from rice cultivation that prevent more widespread use of pesticides. Enlightened agrochemical companies such as Syngenta Bangladesh Limited have recognized that insecticide use in rice should be discouraged, and promote IPM options through their farmer field school (FFS) programme. This paper describes the results of a collaborative project to assist Syngenta to develop and incorporate mass trapping with sex pheromones into their FFS programme as an environmentally benign method of controlling the predominant insect pests of rice, stem borers.


Sign in / Sign up

Export Citation Format

Share Document