scholarly journals Effect of Kinetin (6-FAP) and Cycocel (CCC) on Growth, Metabolism and Cellular Organelles in Pearl Millet (Pennisetum glaucum) Under Water Stress

Author(s):  
Santosh Kumari
1991 ◽  
Vol 116 (1) ◽  
pp. 67-72 ◽  
Author(s):  
V. Mahalakshmi ◽  
F. R. Bidinger ◽  
D. S. Raju

SUMMARYThe susceptibility to drought stress during flowering and grain filling of dwarf hybrids of pearl millet carrying the dwarfing gene d2 was investigated in 1987 at Patancheru, India, under field conditions during the dry season and, in the rainy season, under a rain shelter, using four pairs of near-isogenic tall and dwarf hybrids. Drought stress during grain filling reduced the number of grains per unit area and individual grain mass. Grain yields of the dwarf hybrids were lower than those of the corresponding tall hybrids in the unstressed control and under drought stress and were associated with a lower individual grain mass in the dwarf lines. In the dwarf hybrids, harvest index was similar to or better than that of the tall versions but a reduced biomass resulted in lower grain yields. Dwarf hybrids were not more adversely affected by water stress, however, than their tall counterparts, indicating that susceptibility to drought stress would not be likely to limit acceptance of new dwarf varieties.


Author(s):  
R.C. Meena ◽  
Supriya Ambawat ◽  
C. Tara Satyavathi ◽  
Moola Ram ◽  
Vikas Khandelwal ◽  
...  

Background: Pearl millet [Pennisetum glaucum (L.) Br.] is the most widely grown staple food of majority of poor and small land holders in Asia and Africa. It is also consumed as feed and fodder for livestock. It is the sixth most important cereal crop in the world next to maize, rice wheat, barley and sorghum. The temperature is one of the key climatic factors and has profound effect on the growth and development of the pearl millet. It can only be managed through developing hybrid varieties which can tolerate high temperature during germination and early seedling stages.The present study aimed to identify drought tolerant genotypes of pearl millet at seedling stage. Methods: This experiment was carried out at Mandor during kharif 2018 with five selected pearl millet advanced hybrids MH 2192, MH 2224, MH 2228, MH 2354 and MH 2359 along with three checks RHB 177, MPMH 17 and 86M86 which were tested under polyethylene glycol (PEG) (5% and 10%) induced osmotic stress. Various physiological parameters were recorded 15 days after sowing and statistical analysis made using Windostat software. Result: The results revealed that shoot length, seedling dry weight, relative water content, membrane stability index and chlorophyll content decreased significantly with PEG induced water stress in all the hybrids while root length and catalase activity increased significantly under water stress. Among 5 hybrids, two hybrids viz. MH 2359 and MH 2354 performed better and found to be superior under PEG induced water stress. Thus, various drought tolerance indices may further be studied for these two hybrids and can be used in development of drought tolerant genotypes which may prove helpful for crop improvement programs of pearl millet.


2021 ◽  
Vol 13 (15) ◽  
pp. 8460
Author(s):  
Armel Rouamba ◽  
Hussein Shimelis ◽  
Inoussa Drabo ◽  
Mark Laing ◽  
Prakash Gangashetty ◽  
...  

Pearl millet (Pennisetum glaucum) is a staple food crop in Burkina Faso that is widely grown in the Sahelian and Sudano-Sahelian zones, characterised by poor soil conditions and erratic rainfall, and high temperatures. The objective of this study was to document farmers’ perceptions of the prevailing constraints affecting pearl millet production and related approaches to manage the parasitic weeds S. hermonthica. The study was conducted in the Sahel, Sudano-Sahelian zones in the North, North Central, West Central, Central Plateau, and South Central of Burkina Faso. Data were collected through a structured questionnaire and focus group discussions involving 492 participant farmers. Recurrent drought, S. hermonthica infestation, shortage of labour, lack of fertilisers, lack of cash, and the use of low-yielding varieties were the main challenges hindering pearl millet production in the study areas. The majority of the respondents (40%) ranked S. hermonthica infestation as the primary constraint affecting pearl millet production. Respondent farmers reported yield losses of up to 80% due to S. hermonthica infestation. 61.4% of the respondents in the study areas had achieved a mean pearl millet yields of <1 t/ha. Poor access and the high cost of introduced seed, and a lack of farmers preferred traits in the existing introduced pearl millet varieties were the main reasons for their low adoption, as reported by 32% of respondents. S. hermonthica management options in pearl millet production fields included moisture conservation using terraces, manual hoeing, hand weeding, use of microplots locally referred to as ‘zaï’, crop rotation and mulching. These management techniques were ineffective because they do not suppress the below ground S. hermonthica seed, and they are difficult to implement. Integrated management practices employing breeding for S. hermonthica resistant varieties with the aforementioned control measures could offer a sustainable solution for S. hermonthica management and improved pearl millet productivity in Burkina Faso.


2016 ◽  
Vol 26 (5) ◽  
pp. 604-613 ◽  
Author(s):  
John E. Beck ◽  
Michelle S. Schroeder-Moreno ◽  
Gina E. Fernandez ◽  
Julie M. Grossman ◽  
Nancy G. Creamer

Summer cover crop rotations, compost, and vermicompost additions can be important strategies for transition to organic production that can provide various benefits to crop yields, nitrogen (N) availability, and overall soil health, yet are underused in strawberry (Fragaria ×ananassa) production in North Carolina. This study was aimed at evaluating six summer cover crop treatments including pearl millet (Pennisetum glaucum), soybean (Glycine max), cowpea (Vigna unguiculata), pearl millet/soybean combination, pearl millet/cowpea combination, and a no cover crop control, with and without vermicompost additions for their effects on strawberry growth, yields, nutrient uptake, weeds, and soil inorganic nitrate-nitrogen and ammonium-nitrogen in a 2-year field experiment. Compost was additionally applied before seeding cover crops and preplant N fertilizer was reduced by 67% to account for organic N additions. Although all cover crops (with compost) increased soil N levels during strawberry growth compared with the no cover crop treatment, cover crops did not impact strawberry yields in the first year of the study. In the 2nd year, pearl millet cover crop treatments reduced total and marketable strawberry yields, and soybean treatments reduced marketable strawberry yields when compared with the no cover crop treatment, whereas vermicompost additions increased strawberry biomass and yields. Results from this study suggest that vermicompost additions can be important sustainable soil management strategies for transitional and certified organic strawberry production. Summer cover crops integrated with composts can provide considerable soil N, reducing fertilizer needs, but have variable responses on strawberry depending on the specific cover crop species or combination. Moreover, these practices are suitable for both organic and conventional strawberry growers and will benefit from longer-term studies that assess these practices individually and in combination and other benefits in addition to yields.


Sign in / Sign up

Export Citation Format

Share Document