scholarly journals The role of bisphenol A and its analogues as endocrine disruptors influencing the thyroid gland: a short review

2020 ◽  
Vol 89 (3) ◽  
pp. e441
Author(s):  
Justyna Milczarek-Banach ◽  
Piotr Miśkiewicz

Bisphenols (BPs) are common plastic additives widely used in industry, hence, human exposure to BPs is inevitable. The best known BP is bisphenol A (BPA), the production of which and its analogues has been increasing worldwide. This chemical is classified as an endocrine-disrupting chemical, inferring with hormonal homeostasis. Indeed, BPA is associated with the development of oestrogen-dependent neoplasms, infertility, metabolic disorders and neurobehavioral disturbances. However, there is a lack of evidence regarding the impact of BPA and its analogues on the thyroid, with most studies mainly performed on animals or in vitro. This review aims to summarise the knowledge regarding the relationship between BPA and its analogues on the thyroid gland.

Author(s):  
Aylin Jamali Khaghani ◽  
Parisa Farrokh ◽  
Saeed Zavareh

Background: Bisphenol A (BPA), a synthetic endocrine-disrupting chemical, is a reproductive toxicant. Granulosa cells have significant roles in follicle development, and KIT ligand (KITL) and Anti-Müllerian hormone (AMH) are essential biomolecules produced by them during folliculogenesis. Objective: Due to the widespread use of BPA and its potential epigenetic effects, this study examined the impact of BPA on promoter methylation of amh and kitl genes in mouse granulosa cells. Materials and Methods: Preantral follicles were isolated from ovaries of immature mice and cultured for eight days. Then, follicles were treated with 50 and 100 μM of BPA, and 0.01% (v/v) ethanol for 24 and 72 hr. Growth and degeneration of follicles and antrum formation were analyzed. The granulosa cells were isolated mechanically, and their extracted DNA was treated with sodium bisulfite. The promoter regions of the amh and kitl were analyzed with PCR and sequencing. Results: BPA did not change follicle survival and antrum formation significantly (p = 0.41). However, the culture in the presence of 100 μM BPA had an inhibitory effect on growth. Before BPA treatment, the CpG of the kitl and amh promoters were unmethylated and partially methylated, respectively. While the percent of 5mC in the amh promoter reduced at 100 μM of BPA, it did not alter the kitl promoter methylation. Conclusion: BPA at higher concentrations has an inhibitory effect on follicle growth. Moreover, it seems that the epigenetic impact of BPA restricts to the demethylation of CpG sites. Key words: Bisphenol A, DNA methylation, Granulosa cells.


2016 ◽  
Vol 9 (3) ◽  
pp. 63 ◽  
Author(s):  
Hassan Naji

<p><strong>OBJECTIVE: </strong>The main objective of the study was to investigate the role of C-reactive protein on the relationship between Bisphenol A &amp; Cardiovascular Disease, where the C-reactive protein has been taken as a moderating variable.</p><p><strong>METHODS: </strong>Quantitative research design has been incorporated for evaluating the role of C-reactive protein. Similarly, non-parametric Spearman correlation test has been conducted to assess the relationship between BPA and CVD. The data was taken out from the National Health and Nutrition Examination Survey (NHANES), which was collected in the year 2009-2010.</p><p><strong>RESULTS: </strong>The impact of urinary Bisphenol A on serum C-reactive protein was found statistically significant according to the Spearman correlation coefficient, <em>r</em>s<em>= </em>.06, <em>p </em>= .015. The scatter plots found that there is no relationship between the two variables; this observation held true after filtering the outliers from the plot.</p><p><strong>CONCLUSION:</strong> The results might have positive change by contributing to the body of knowledge on bisphenol A and by rising scientific examination of substances used by the people in the daily life. Further research to identify other possible causes of CVD and elevation of CRP is recommended.</p>


2019 ◽  
Vol 13 (2) ◽  
pp. 105-111 ◽  
Author(s):  
O. O. Portyannikova ◽  
S. M. Tsvinger ◽  
A. V. Govorin ◽  
E. N. Romanova

The review contains data from large-scale foreign and Russian studies of the epidemiology of osteoarthritis (OA). It considers the role of modifiable and non-modifiable risk factors for OA, such as age, sex, hormonal status, obesity, etc. There are data on genetic susceptibility to OA and on congenital anomalies that contribute to joint structural changes. Data on the impact of racial and ethnic factors on the development and progression of OA are analyzed. The role of metabolic disorders in the pathogenesis of this disease is highlighted. Data on the relationship of OA to patients' professional activities are summarized.


2020 ◽  
Vol 2 (4) ◽  
pp. 89-94
Author(s):  
Nikola Knizatova ◽  
Katarína Tokárová ◽  
Hana Greifová ◽  
Tomáš Jambor ◽  
Peter Massányi ◽  
...  

Bisphenol A (BPA) is the most well-known compound from the bisphenol family. There is increasing evidence that bisphenol BPA used in plastics, receipts, food packaging, and other products might be harmful to human health due to its actions as an endocrine-disrupting chemical, therefore BPA is being replaced by compounds very similar in structure, but data on the occurrence and effects of these BPA analogs are limited. Therefore, there is increasing concern regarding human exposure to bisphenol analogs (BPs) due to their widespread use and potential adverse effects. The main objective of this work was to investigate human exposure to BPs and the associated endocrine activities. We performed a literature review of the available research made in humans, in in vivo and in vitro tests. The findings support the idea that exposure to BPs may have an impact on human health, especially in terms of endocrine disruption.


2019 ◽  
Author(s):  
Sophie-Christine de Aguiar Greca ◽  
Ioannis Kyrou ◽  
Ryan Pink ◽  
Harpal Randeva ◽  
Dimitris Grammatopoulos ◽  
...  

2019 ◽  
Vol 7 (9) ◽  
pp. 279 ◽  
Author(s):  
Adrian Catinean ◽  
Maria Adriana Neag ◽  
Andrei Otto Mitre ◽  
Corina Ioana Bocsan ◽  
Anca Dana Buzoianu

In recent years, increased attention has been paid to the relationship between microbiota and various diseases, especially immune-mediated diseases. Because conventional therapy for many autoimmune diseases is limited both in efficacy and safety, there is an increased interest in identifying nutraceuticals, particularly probiotics, able to modulate the microbiota and ameliorate these diseases. In this review, we analyzed the research focused on the role of gut microbiota and skin in immunity, their role in immune-mediated skin diseases (IMSDs), and the beneficial effect of probiotics in patients with this pathology. We selected articles published between 2009 and 2019 in PubMed and ScienceDirect that provided information regarding microbiota, IMSDs and the role of probiotics in these diseases. We included results from different types of studies including observational and interventional clinical trials or in vivo and in vitro experimental studies. Our results showed that probiotics have a beneficial effect in changing the microbiota of patients with IMSDs; they also influence disease progression. Further studies are needed to better understand the impact of new therapies on intestinal microbiota. It is also important to determine whether the microbiota of patients with autoimmune diseases can be manipulated in order to restore homeostasis of the microbiota.


2020 ◽  
Vol 9 (2) ◽  
pp. 405 ◽  
Author(s):  
Sophie-Christine de Aguiar Greca ◽  
Ioannis Kyrou ◽  
Ryan Pink ◽  
Harpal Randeva ◽  
Dimitris Grammatopoulos ◽  
...  

Background: Endocrine-disrupting chemicals (EDCs) are environmental chemicals/toxicants that humans are exposed to, interfering with the action of multiple hormones. Bisphenol A (BPA) is classified as an EDC with xenoestrogenic activity with potentially adverse effects in reproduction. Currently, a significant knowledge gap remains regarding the complete spectrum of BPA-induced effects on the human placenta. As such, the present study examined the effects of physiologically relevant doses of BPA in vitro. Methods: qRT-PCR, Western blotting, immunofluorescence, ELISA, microarray analyses, and bioinformatics have been employed to study the effects of BPA using nonsyncytialised (non-ST) and syncytialised (ST) BeWo cells. Results: Treatment with 3 nM BPA led to an increase in cell number and altered the phosphorylation status of p38, an effect mediated primarily via the membrane-bound estrogen receptor (GPR30). Nonbiased microarray analysis identified 1195 and 477 genes that were differentially regulated in non-ST BeWo cells, whereas in ST BeWo cells, 309 and 158 genes had altered expression when treated with 3 and 10 nM, respectively. Enriched pathway analyses in non-ST BeWo identified a leptin and insulin overlap (3 nM), methylation pathways (10 nM), and differentiation of white and brown adipocytes (common). In the ST model, most significantly enriched were the nuclear factor erythroid 2-related factor 2 (NRF2) pathway (3 nM) and mir-124 predicted interactions with cell cycle and differentiation (10 nM). Conclusion: Collectively, our data offer a new insight regarding BPA effects at the placental level, and provide a potential link with metabolic changes that can have an impact on the developing fetus.


Author(s):  
Enoch Appiah Adu-Gyamfi ◽  
Cheryl S Rosenfeld ◽  
Geetu Tuteja

Abstract Bisphenol A (BPA) is an endocrine-disrupting chemical (EDC) that is used in a wide-variety of plastic and common house-hold items. Therefore, there is potential continual exposure to this compound. BPA exposure has been linked to certain placenta-associated obstetric complications such as preeclampsia, fetal growth restriction, miscarriage, and preterm birth. However, how BPA exposure results in these disorders remains uncertain. Hence, we have herein summarized the reported impact of BPA on the morphology and metabolic state of the placenta and have proposed mechanisms by which BPA affects placentation, potentially leading to obstetric complications. Current findings suggest that BPA induces pathological changes in the placenta and disrupts its metabolic activities. Based on exposure concentrations, BPA can elicit apoptotic or anti-apoptotic signals in the trophoblasts; and can exaggerate trophoblast fusion while inhibiting trophoblast migration and invasion to affect pregnancy. Accordingly, the usage of BPA products by pregnant women should be minimized and less harmful alternative chemicals should be explored and employed where possible.


2015 ◽  
Vol 54 (3) ◽  
pp. 289-303 ◽  
Author(s):  
Ciro Menale ◽  
Maria Teresa Piccolo ◽  
Grazia Cirillo ◽  
Raffaele A Calogero ◽  
Alfonso Papparella ◽  
...  

Bisphenol A (BPA) is a xenobiotic endocrine-disrupting chemical.In vitroandin vivostudies have indicated that BPA alters endocrine-metabolic pathways in adipose tissue, which increases the risk of metabolic disorders and obesity. BPA can affect adipose tissue and increase fat cell numbers or sizes by regulating the expression of the genes that are directly involved in metabolic homeostasis and obesity. Several studies performed in animal models have accounted for an obesogen role of BPA, but its effects on human adipocytes – especially in children – have been poorly investigated. The aim of this study is to understand the molecular mechanisms by which environmentally relevant doses of BPA can interfere with the canonical endocrine function that regulates metabolism in mature human adipocytes from prepubertal, non-obese children. BPA can act as an estrogen agonist or antagonist depending on the physiological context. To identify the molecular signatures associated with metabolism, transcriptional modifications of mature adipocytes from prepubertal children exposed to estrogen were evaluated by means of microarray analysis. The analysis of deregulated genes associated with metabolic disorders allowed us to identify a small group of genes that are expressed in an opposite manner from that of adipocytes treated with BPA. In particular, we found that BPA increases the expression of pro-inflammatory cytokines and the expression ofFABP4andCD36, two genes involved in lipid metabolism. In addition, BPA decreases the expression ofPCSK1, a gene involved in insulin production. These results indicate that exposure to BPA may be an important risk factor for developing metabolic disorders that are involved in childhood metabolism dysregulation.


Gene ◽  
2016 ◽  
Vol 590 (2) ◽  
pp. 234-243 ◽  
Author(s):  
Paromita Deb ◽  
Arunoday Bhan ◽  
Imran Hussain ◽  
Khairul I. Ansari ◽  
Samara A. Bobzean ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document