scholarly journals Fabrication and Study of Structural, Optical Features of Nano Structured, Photo-Harvesting Organo-Lead Halide-Based Perovskite Solar Cell

Author(s):  
Abhishek Dhar ◽  
Rohit L. Vekariya ◽  
Argha Dey ◽  
Subhasis Roy

In a world where conventional sources of energy are fast depleting, the quest for alternative energy sources may hold the key for the survival of humanity. In the present work, emphasis has been given to the idea of producing energy from perovskite based solar cells. In order to bring this idea into fruition, a unique and novel nano structured perovskite material n-propyl ammonium lead chloride (C3H7NH3+PbCl3⁻) was prepared through a unique co-precipitation route using n-propyl amine (n-C3H7NH2) and hydrochloric acid as the starting precursors with aqueous solution of Pb(CH3COO)23H2O. Finally acetic acid was added to the solution and this solution was allowed to concentrate and then gradually cooled down to room temperature. After math, the synthesized material was spin-coated on TiO2 film to fabricate the solar cell. The device was then undergone systematic analysis using XRD, SEM, UV and Photo Conversion to get a transparent idea regarding its structural, electrical and optical properties. When experimentally applied, this perovskite-based solar cell has shown energy conversion efficiency (η) of around 6.01 % which is noticeably good. Thus it can be concluded that this material is promising for fabrication of vastly efficient solar cells. This technology can be tried in large scale as an alternative of conventional energy in the near future.

2013 ◽  
Vol 320 ◽  
pp. 693-697
Author(s):  
Wei Cui ◽  
Chong Wang ◽  
Yu Yang

The solar energy is the most promising energy to solve energy crisis and environmental problem. Quantum dot can be applied to solar cells in two structures of QDSC to improve the energy conversion efficiency. The two structures are p-i-n type QDSC and quantum dots sensitized solar cells. The energy conversion efficiency of p-i-n type QDSC may increase up to 45%. Both CdSe and CdS quantum dot can be used as the sensitizer of the QDSSC and each of them has its demerits and merits, but the conversion efficiency of QDSSC is low if they were used respectively. Thus, in order to overcome their demerits respectively, we could try to combine their merits. QDSC is the most promising technique to solve the problems of solar cell. But before large-scale application their efficiency and stability should be improved.


2021 ◽  
Author(s):  
Song Fang ◽  
Bo Chen ◽  
Bangkai Gu ◽  
Linxing Meng ◽  
Hao Lu ◽  
...  

UV induced decomposition of perovskite material is one of main factors to severely destroy perovskite solar cells for instability. Here we report a UV stable perovskite solar cell with a...


2022 ◽  
Author(s):  
Ehsan Elahi ◽  
Ghulam Dastgeer ◽  
Abdul Subhan Siddiqui ◽  
Supriya A. Patil ◽  
Muhammad Waqas Iqbal ◽  
...  

With perovskite materials, rapid progress in power conversion efficiency (PCE) to reach 25% has gained a significant amount of attention from the solar cell industry.


2019 ◽  
Vol >15 (5) ◽  
pp. 501-505 ◽  
Author(s):  
Mohammad Rezaul Karim ◽  
Muhammad Ali Shar ◽  
Syed Abdullah

Background: Energy crisis is a vital issue worldwide and it will be increased tremendously in future. Alternative energy sources have been sought for the betterment of the future world. Solar energy is an alternative energy resource with plenty of opportunities. To make user- friendly and cheaper solar cells, dye-sensitized solar cells are tried to develop in this aspect. Objective: Single dye is not good enough to capture a wide range of solar light. The blending of different dyes is an alternative approach to harvest a wider range of solar lights on solar cells. Here, N719 and IR dyes were utilized to get UV-VIS and NIR ranges of solar lights in dye-sensitized solar cells. Methods: Dye-sensitized solar cells (DSSCs) were fabricated by using mixed dyes with various combinations of N719 (dye A) and IR dyes (dye B). The mixed dyes solutions were adsorbed on titanium dioxide (TiO2) and revealed significant light absorption & photosensitization compared with the individual dye solutions. The DSSCs fabricated with more percentage of IR dyes exhibited the best sensitization and broader spectrum. Results: The light absorption spectrum of the blended dyes solutions was confined peaks resultant of both N719 and IR dyes. The maximum efficiencies of 7.91% and 7.77% were obtained with 70% and 80% of IR dyes, respectively. Conclusion: Both N719 and IR mixed dyes solar cells were fabricated successfully for the first time. The relevant reasons behind the working of N719 and IR mixed dyes solar cells have been discussed. It was also noted that only IR dyes sensitized cells did not function under the simulated sunlight.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Grace Rajan ◽  
Krishna Aryal ◽  
Shankar Karki ◽  
Puruswottam Aryal ◽  
Robert W. Collins ◽  
...  

In view of the large-scale utilization of Cu(In,Ga)Se2 (CIGS) solar cells for photovoltaic application, it is of interest not only to enhance the conversion efficiency but also to reduce the thickness of the CIGS absorber layer in order to reduce the cost and improve the solar cell manufacturing throughput. In situ and real-time spectroscopic ellipsometry (RTSE) has been used conjointly with ex situ characterizations to understand the properties of ultrathin CIGS films. This enables monitoring the growth process, analyzing the optical properties of the CIGS films during deposition, and extracting composition, film thickness, grain size, and surface roughness which can be corroborated with ex situ measurements. The fabricated devices were characterized using current voltage and quantum efficiency measurements and modeled using a 1-dimensional solar cell device simulator. An analysis of the diode parameters indicates that the efficiency of the thinnest cells was restricted not only by limited light absorption, as expected, but also by a low fill factor and open-circuit voltage, explained by an increased series resistance, reverse saturation current, and diode quality factor, associated with an increased trap density.


Author(s):  
Hongliang Wang ◽  
Y. Lawrence Yao ◽  
Hongqiang Chen

Laser scribing is an important manufacturing process used to reduce photocurrent and resistance losses and increase solar cell efficiency through the formation of serial interconnections in large-area solar cells. High-quality scribing is crucial since the main impediment to large-scale adoption of solar power is its high-production cost (price-per-watt) compared to competing energy sources such as wind and fossil fuels. In recent years, the use of glass-side laser scribing processes has led to increased scribe quality and solar cell efficiencies; however, defects introduced during the process such as thermal effect, microcracks, film delamination, and removal uncleanliness keep the modules from reaching their theoretical efficiencies. Moreover, limited numerical work has been performed in predicting thin-film laser removal processes. In this study, a nanosecond (ns) laser with a wavelength at 532 nm is employed for pattern 2 (P2) scribing on CdTe (cadmium telluride) based thin-film solar cells. The film removal mechanism and defects caused by laser-induced micro-explosion process are studied. The relationship between those defects, removal geometry, laser fluences, and scribing speeds are also investigated. Thermal and mechanical numerical models are developed to analyze the laser-induced spatiotemporal temperature and pressure responsible for film removal. The simulation can well-predict the film removal geometries, transparent conducting oxide (TCO) layer thermal damage, generation of microcracks, film delamination, and residual materials. The characterization of removal qualities will enable the process optimization and design required to enhance solar module efficiency.


2021 ◽  
Vol 2070 (1) ◽  
pp. 012043
Author(s):  
S S Hegde ◽  
K Ramesh

Abstract Photovoltaics (PV) have become increasingly popular and reached as the third-largest renewable energy source. Thin-film solar cells made from earth-abundant, inexpensive and environmentally friendly materials are needed to replace the current PV technologies whose large-scale applications are limited by material and/or resource constraints. Near optimum direct optical bandgap of 1.3 eV, high absorption coefficient (>104 cm−1), less toxic, and abundant raw resources along with considerable scalability have made tin sulfide (SnS) as a strategic choice for next-generation PVs. In this review, limitations of leading commercial PV technologies and the status of a few alternate low-cost PV materials are outlined. Recent literature on crucial physical properties of SnS thin-films and the present status of SnS thin-film-based solar cells are discussed. Deficiency and adequacy of some of the key properties of SnS including carrier mobility (μ), minority carrier lifetime (τ), and absorption coefficient (α) are discussed in comparison of existing commercial solar cell materials. Future research trends on SnS based solar cells to enhance their conversion efficiencies towards the theoretical maximum of 24% from present ~5% and its prospectus as next-generation solar cell is also discussed.


2021 ◽  
Vol 83 (5) ◽  
pp. 109-117
Author(s):  
Nurul Alfatihah Mohd Arifin ◽  
Hasiah Salleh ◽  
Ahmad Nazri Dagang ◽  
Nik Aziz Nik Ali ◽  
Nur Salihah Alias ◽  
...  

Alternative energy sources such as wind, solar, biomass, hydro, and geothermal have become imperative for green energy solutions. A growing demand of hybrid solar cells is yet another promising option toward green energy providing the opportunity to explore natural dye extracts from the plant. The natural dyes were extracted from mangosteen pericarp (MP), black grape peel (BGP), and violet bougainvillea flowers (VBF), respectively. The natural dyes were then undergoing degradation under exposure to the light for six weeks. UV-vis spectroscopy was used to characterize the optical absorption of the natural dyes. UV-vis result showed that MP absorbs three ranges of light, 400-600 nm (chlorophyll a), 530- 550 nm (anthocyanin), and 650-670 nm (chlorophyll a). After 6 weeks, MP gives the best in sustaining itself by having the lowest percentage of photodegradation (50.73 %) compare to BGP (83.88%) and VBF (65.66%). The natural dyes gave the FTIR vibration peaks of OH, C-H, C=O, and C-O-C functional groups. Therefore, this study provides significant contributes towards explaining the potential of MP as the promising photosensitizer in the development of the hybrid solar cell.


2020 ◽  
Vol 860 ◽  
pp. 28-33
Author(s):  
Rany Khaeroni ◽  
Herman ◽  
Priastuti Wulandari

In recent years, perovskite material has been extensively studied due to its unique physical properties and promising application in the third generation of solar cells. In particular, Sn-based perovskite has been considered to replace Pb-based perovskite because of the toxic effects and it can lead to other serious problems related to the environment. Cs2SnI6 perovskite has been known to be synthesized in a simple chemical process and it can be produced on a large scale. Moreover, this material is also oxygen and moisture stable due to the high oxidation state of tin. In this study, we synthesize air-stable Cs2SnI6 perovskite by the use of the wet chemical process at room temperature. Next, we attempt to fabricate the inverted bulk heterojunction solar cells incorporated Cs2SnI6 as electron transport layer in the configuration of ITO/ZnO/Cs2SnI6/P3HT:PCBM/PEDOT:PSS/Ag to improve device performance. The Cs2SnI6 perovskite shows an Fm-3m space group with a cubic lattice parameter of 11.62Å confirmed by X-Ray Diffraction (XRD) measurement, while UV-Vis measurement indicates this type of perovskite has direct band gap ~3.1 eV. The fabricated solar cell device reveals the enhancement in current density at short circuit condition (Jsc) from 64.69 mA/cm2 to 77.02 mA/cm2 with the addition of 2.25 mg/ml Cs2SnI6 along with the enhancement of power conversion efficiency (PCE) from 7.05% to 9.75% as characterized by J-V measurement. In our case, the voltage at open circuit condition (Voc) of the device does not perform significant improvement. Besides, it is found that the solar cell devices are quite stable even after exposure in the air for six weeks after fabrication, as indicated by PCE performance.


Molecules ◽  
2020 ◽  
Vol 25 (15) ◽  
pp. 3520 ◽  
Author(s):  
Samia Kausar ◽  
Ataf Ali Altaf ◽  
Muhammad Hamayun ◽  
Nasir Rasool ◽  
Mahwish Hadait ◽  
...  

Lignin depolymerization for the purpose of synthesizing aromatic molecules is a growing focus of research to find alternative energy sources. In current studies, the photocatalytic depolymerization of lignin has been investigated by two new iso-propylamine-based lead chloride perovskite nanomaterials (SK9 and SK10), synthesized by the facile hydrothermal method. Characterization was done by Powder X-Ray Diffraction (PXRD), Scanning Electron Microscopy (SEM), UV-Visible (UV-Vis), Photoluminescence (PL), and Fourier-Transform Infrared (FTIR) Spectroscopy and was used for the photocatalytic depolymerization of lignin under UV light. Lignin depolymerization was monitored by taking absorption spectra and catalytic paths studied by applying kinetic models. The %depolymerization was calculated for factors such as catalyst dose variation, initial concentration of lignin, and varying temperatures. Pseudo-second order was the best suited kinetic model, exhibiting a mechanism for lignin depolymerization that was chemically rate controlled. The activation energy (Ea) for the depolymerization reaction was found to be 15 kJ/mol, which is remarkably less than conventional depolymerization of the lignin, i.e., 59.75 kJ/mol, exhibiting significant catalytic efficiencies of synthesized perovskites. Products of lignin depolymerization obtained after photocatalytic activity at room temperature (20 °C) and at 90 °C were characterized by GC-MS analysis, indicating an increase in catalytic lignin depolymerization structural subunits into small monomeric functionalities at higher temperatures. Specifically, 2-methoxy-4-methylphenol (39%), benzene (17%), phenol (10%) and catechol (7%) were detected by GC-MS analysis of lignin depolymerization products.


Sign in / Sign up

Export Citation Format

Share Document