scholarly journals GLP-1 Analogue Liraglutide Attenuates Mutant Huntingtin-Induced Neurotoxicity by Restoration of Neuronal Insulin Signaling

Author(s):  
Ching-Chi Chang ◽  
Tzu-Chin Lin ◽  
Hsiao-Li Ho ◽  
Chien-Yin Kuo ◽  
Hsin-Hua Li ◽  
...  

Huntington's disease (HD) is a progressive and fatal neurodegenerative disease caused by CAG repeat expansion in the coding region of huntingtin (HTT) protein. The accumulation of mutant HTT (mHTT) contributes to neurotoxicity by causing autophagy defects and oxidative stress that ultimately lead to neuronal death. Interestingly, epidemiologic studies have demonstrated that the prevalence of type-2 diabetes, a metabolic disease mainly caused by defective insulin signaling, is higher in patients with HD than in healthy controls. Although the precise mechanisms of mHTT-mediated toxicity remain unclear, the blockade of brain insulin signaling may initiate or exacerbate mHTT-induced neurodegeneration. In this study, we used an in vitro HD model to investigate whether neuronal insulin signaling is involved in mHTT-mediated neurotoxicity. Our results demonstrated that mHTT overexpression significantly impairs insulin signaling and causes apoptosis in neuronal cells. However, treatment with liraglutide, a GLP-1 analogue, markedly restores insulin sensitivity and enhances cell viability. This neuroprotective effect may be attributed to the contribution of the upregulated expression of genes associated with endogenous antioxidant pathways to oxidative stress reduction. In addition, liraglutide stimulates autophagy through AMPK activation, which attenuates the accumulation of HTT aggregates within neuronal cells. Our findings collectively suggest that liraglutide can rescue impaired insulin signaling caused by mHTT and that GLP-1 may potentially reduce mHTT-induced neurotoxicity in the pathogenesis of HD.

2018 ◽  
Vol 19 (9) ◽  
pp. 2505 ◽  
Author(s):  
Ching-Chi Chang ◽  
Tzu-Chin Lin ◽  
Hsiao-Li Ho ◽  
Chien-Yin Kuo ◽  
Hsin-Hua Li ◽  
...  

Huntington’s disease (HD) is a progressive and fatal neurodegenerative disease caused by CAG repeat expansion in the coding region of huntingtin (HTT) protein. The accumulation of mutant HTT (mHTT) contributes to neurotoxicity by causing autophagy defects and oxidative stress that ultimately lead to neuronal death. Interestingly, epidemiologic studies have demonstrated that the prevalence of type-2 diabetes, a metabolic disease mainly caused by defective insulin signaling, is higher in patients with HD than in healthy controls. Although the precise mechanisms of mHTT-mediated toxicity remain unclear, the blockade of brain insulin signaling may initiate or exacerbate mHTT-induced neurodegeneration. In this study, we used an in vitro HD model to investigate whether neuronal insulin signaling is involved in mHTT-mediated neurotoxicity. Our results demonstrated that mHTT overexpression significantly impairs insulin signaling and causes apoptosis in neuronal cells. However, treatment with liraglutide, a GLP-1 analogue, markedly restores insulin sensitivity and enhances cell viability. This neuroprotective effect may be attributed to the contribution of the upregulated expression of genes associated with endogenous antioxidant pathways to oxidative stress reduction. In addition, liraglutide stimulates autophagy through AMPK activation, which attenuates the accumulation of HTT aggregates within neuronal cells. Our findings collectively suggest that liraglutide can rescue impaired insulin signaling caused by mHTT and that GLP-1 may potentially reduce mHTT-induced neurotoxicity in the pathogenesis of HD.


Antioxidants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 375
Author(s):  
Jin Young Hong ◽  
Hyunseong Kim ◽  
Junseon Lee ◽  
Wan-Jin Jeon ◽  
Seung Ho Baek ◽  
...  

Inula britannica var. chinensis (IBC) has been used as a traditional medicinal herb to treat inflammatory diseases. Although its anti-inflammatory and anti-oxidative effects have been reported, whether IBC exerts neuroprotective effects and the related mechanisms in cortical neurons remain unknown. In this study, we investigated the effects of different concentrations of IBC extract (5, 10, and 20 µg/mL) on cortical neurons using a hydrogen peroxide (H2O2)-induced injury model. Our results demonstrate that IBC can effectively enhance neuronal viability under in vitro-modeled reaction oxygen species (ROS)-generating conditions by inhibiting mitochondrial ROS production and increasing adenosine triphosphate level in H2O2-treated neurons. Additionally, we confirmed that neuronal death was attenuated by improving the mitochondrial membrane potential status and regulating the expression of cytochrome c, a protein related to cell death. Furthermore, IBC increased the expression of brain-derived neurotrophic factor and nerve growth factor. Furthermore, IBC inhibited the loss and induced the production of synaptophysin, a major synaptic vesicle protein. This study is the first to demonstrate that IBC exerts its neuroprotective effect by reducing mitochondria-associated oxidative stress and improving mitochondrial dysfunction.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Meixia Chen ◽  
Jie Li ◽  
Bo Zhang ◽  
Xiangfang Zeng ◽  
Xiangzhou Zeng ◽  
...  

Scope. Implantation loss is a considerable cause of early pregnancy loss in humans and mammalian animals. It is not addressed how proliferative uterine defects implicate in implantation loss. Methods and Results. Herein, a comprehensive proteomic analysis was conducted on proliferative endometria from sows with low and normal reproductive performance (LRP and NRP, respectively). Enrichment analysis of differentially expressed proteins revealed alterations in endometrial remodeling, substance metabolism (mainly lipid, nitrogen, and retinol metabolism), immunological modulation, and insulin signaling in LRP sows. Importantly, aberrant lipid metabolite accumulation and dysregulation of insulin signaling were coincidently confirmed in endometria of LPR sows, proving an impaired insulin sensitivity. Furthermore, established high-fat diet- (HFD-) induced insulin-resistant mouse models revealed that uterine insulin resistance beginning before pregnancy deteriorated uterine receptivity and decreased implantation sites and fetal numbers. Mitochondrial biogenesis and fusion were decreased, and reactive oxygen species was overproduced in uteri from the HFD group during the implantation period. Ishikawa and JAR cells directly demonstrated that oxidative stress compromised implantation in vitro. Conclusions. This study demonstrated that uterine insulin sensitivity impairment beginning before pregnancy resulted in implantation and fetal loss associated with oxidative stress induced by mitochondrial dysfunction.


2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Zhihong Lin ◽  
Danni Zhu ◽  
Yongqing Yan ◽  
Boyang Yu ◽  
Qiujuan Wang ◽  
...  

Oxidative stress is involved in the pathogenesis of ischemic neuronal injury. A Chinese herbal formula composed ofPoria cocos(Chinese name:Fu Ling),Atractylodes macrocephala(Chinese name:Bai Zhu) andAngelica sinensis(Chinese names:Danggui, Dong quai, Donggui; Korean name:Danggwi) (FBD), has been proved to be beneficial in the treatment of cerebral ischemia/reperfusion (I/R).This study was carried out to evaluate the protective effect of FBD against neuronal oxidative stressin vivoandin vitro. Rat I/R were established by middle cerebral artery occlusion (MCAO) for 1 h, followed by 24 h reperfusion. MCAO led to significant depletion in superoxide dismutase and glutathione and rise in lipid peroxidation (LPO) and nitric oxide in brain. The neurological deficit and brain infarction were also significantly elevated by MCAO as compared with sham-operated group. All the brain oxidative stress and damage were significantly attenuated by 7 days pretreatment with the aqueous extract of FBD (250 mg kg−1, p.o.). Moreover, cerebrospinal fluid sampled from FBD-pretreated rats protected PC12 cells against oxidative insult induced by 0.2 mM hydrogen peroxide, in a concentration and time-dependent manner (IC5010.6%, ET501.2 h). However, aqueous extract of FBD just slightly scavenged superoxide anion radical generated in xanthine–xanthine oxidase system (IC502.4 mg ml−1) and hydroxyl radical generated in Fenton reaction system (IC503.6 mg ml−1). In conclusion, FBD was a distinct antioxidant phytotherapy to rescue neuronal oxidative stress, through blocking LPO, restoring endogenous antioxidant system, but not scavenging free radicals.


Antioxidants ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 3 ◽  
Author(s):  
Bo Dam Lee ◽  
Jae-Myung Yoo ◽  
Seong Yeon Baek ◽  
Fu Yi Li ◽  
Dai-Eun Sok ◽  
...  

3,3′-Diindolylmethane (DIM), a metabolite of indole-3-carbinol present in Brassicaceae vegetables, possesses various health-promoting effects. Nonetheless, the effect of DIM on neurodegenerative diseases has not been elucidated clearly. In this study, we hypothesized DIM may protect neuronal cells against oxidative stress-induced apoptosis by promoting the formation of brain-derived neurotrophic factor (BDNF) and antioxidant enzymes through stabilizing the activation of the tropomyosin-related kinase receptor B (TrkB) cascade and we investigated the effect of DIM on oxidative stress-mediated neurodegenerative models. DIM protected neuronal cells against oxidative stress-induced apoptosis by regulating the expression of apoptosis-related proteins in glutamate-treated HT-22 cells. Additionally, DIM improved the expression of BDNF and antioxidant enzymes, such as heme oxygenase-1, glutamate-cysteine ligase catalytic subunit, and NAD(P)H quinine oxidoreductase-1, by promoting the activation of the TrkB/protein kinase B (Akt) pathway in the cells. Consistent with in vitro studies, DIM attenuated memory impairment by protecting hippocampal neuronal cells against oxidative damage in scopolamine-treated mice. Conclusionally, DIM exerted neuroprotective and antioxidant actions through the activation of both BDNF production and antioxidant enzyme formation in accordance with the TrkB/Akt pathway in neuronal cells. Such an effect of DIM may provide information for the application of DIM in the prevention of and therapy for neurodegenerative diseases.


2020 ◽  
Vol 9 (6) ◽  
pp. 734-740
Author(s):  
Yigit Sezer ◽  
Ayse Tarbin Jannuzzi ◽  
Marilyn A Huestis ◽  
Buket Alpertunga

Abstract Background: JWH-018 was the first synthetic cannabinoid introduced as a legal high and the first of the new generation of novel psychoactive substances that flooded worldwide drug markets. JWH-018 was marketed as “spice,” “herbal incense,” or “herbal blend,” as a popular and legal (at the time) alternative to cannabis (marijuana). JWH-018 is a potent synthetic cannabinoid with considerable toxicity associated with its use. JWH-018 has qualitatively similar but quantitatively greater pharmacological effects than cannabis, leading to intoxications and even deaths. The mechanisms of action of the drug’s toxicity require research, and thus, the aim of the present study was to investigate the toxicological profile of JWH-018 in human SH-SY5Y neuronal cells. Methods: SH-SY5Y neuronal cells were exposed to increasing concentrations from 5 to 150 μM JWH-018 over 24 h. Cytotoxicity, DNA damage, the apoptotic/necrotic rate, and oxidative stress were assessed following SH-SY5Y exposure. Results: JWH-018 did not produce a significant decrease in SH-SY5Y cell viability, did not alter apoptotic/necrotic rate, and did not cause genotoxicity in SH-SY5Y cells with 24-h exposure. Glutathione reductase and catalase activities were significantly reduced; however, there was no significant change in glutathione peroxidase activity. Also, JWH-018 treatment significantly decreased glutathione concentrations, significantly increased protein carbonylation, and significantly increased malondialdehyde (MDA) concentrations. For significance, all P < 0.05. Discussion/Conclusion: JWH-018 produced oxidative stress in SH-SY5Y cells that could be an underlying mechanism of JWH-018 neurotoxicity. Additional in vivo animal and human-based studies are needed to confirm our findings.


Endocrinology ◽  
2014 ◽  
Vol 155 (8) ◽  
pp. 2810-2819 ◽  
Author(s):  
Taichi Sugizaki ◽  
Mitsuhiro Watanabe ◽  
Yasushi Horai ◽  
Nao Kaneko-Iwasaki ◽  
Eri Arita ◽  
...  

Dyslipidemic patients with diabetes mellitus, including metabolic syndrome, are at increased risk of coronary heart disease. It has been reported that ezetimibe, a cholesterol absorption inhibitor, improves metabolic diseases in mice and humans. However, the underlying mechanism has been unclear. Here we explored the effects of ezetimibe on lipid and glucose homeostasis. Male KK-Ay mice were fed a high-fat diet, which is the mouse model of metabolic syndrome, with or without ezetimibe for 14 weeks. Ezetimibe improved dyslipidemia, steatosis, and insulin resistance. Ezetimibe decreased hepatic oxysterols, which are endogenous agonists of liver X receptor (LXR), to decrease hepatic lipogenic gene expressions, especially in stearoyl-CoA desaturase-1 (SCD1), leading to a remarkable reduction of hepatic oleate content that would contribute to the improvement of steatosis by reducing triglycerides and cholesterol esters. Simultaneously, hepatic β-oxidation, NADPH oxidase and cytochrome P450 2E1 (CYP2E1) were reduced, and thus reactive oxygen species (ROS) and inflammatory cytokines were also decreased. Consistent with these changes, ezetimibe diminished c-Jun N-terminal kinase (JNK) phosphorylation and improved insulin signaling in the liver. In vitro study using primary hepatocytes obtained from male SD rats, treated with oleate and LXR agonist, showed excess lipid accumulation, increased oxidative stress and impaired insulin signaling. Therefore, in obese subjects, ezetimibe reduces hepatic LXR activity by reducing hepatic oxysterols to lower hepatic oleate content. This improves steatosis and reduces oxidative stress, and this reduction improves insulin signaling in the liver. These results provide insight into pathogenesis and strategies for treatment of the metabolic syndrome.


2015 ◽  
Vol 36 (3) ◽  
pp. 966-979 ◽  
Author(s):  
Hao Liu ◽  
Ping Mao ◽  
Jia Wang ◽  
Tuo Wang ◽  
Chang-Hou Xie

Background: Parkinson disease (PD) is a common adult-onset neurodegenerative disorder, and PD related neuronal injury is associated with oxidative stress and mitochondrial dysfunction. Allicin, the main biologically active compound derived from garlic, has been shown to exert various anti-oxidative and anti-apoptotic activities in in vitro and in vivo studies. Methods: The present study aimed to investigate the potential protective role of allicin in an in vitro PD model induced by 6-hydroxydopamine (6-OHDA) in PC12 cells. The protective effects were measured by cell viability, decreased lactate dehydrogenase (LDH) release and flow cytometry, and the anti-oxidative activity was determined by reactive oxygen species (ROS) generation, lipid peroxidation and the endogenous antioxidant enzyme activities. Mitochondrial function in PC12 cells was detected by mitochondrial membrane potential (MMP) collapse, cytochrome c release, mitochondrial ATP synthesis, and the mitochondrial Ca2+ buffering capacity. To investigate the potential mechanism, we also measured the expression of mitochondrial biogenesis factors, mitochondrial morphological dynamic changes, as well as detected mitochondrial dynamic proteins by western blot. Results: We found that allicin treatment significant increased cell viability, and decreased LDH release and apoptotic cell death after 6-OHDA exposure. Allicin also inhibited ROS generation, reduced lipid peroxidation and preserved the endogenous antioxidant enzyme activities. These protective effects were associated with suppressed mitochondrial dysfunction, as evidenced by decreased MMP collapse and cytochrome c release, preserved mitochondrial ATP synthesis, and the promotion of mitochondrial Ca2+ buffering capacity. In addition, allicin significantly enhanced mitochondrial biogenesis and prevented fragmentation of mitochondrial network after 6-OHDA treatment. The results of western blot analysis showed that the 6-OHDA induced decrease in the expression of optic atrophy type 1 (Opa-1), increase in mitochondrial fission 1 (Fis-1) and dynamin-related protein 1 (Drp-1) were all partially revised by allicin. Conclusion: In summary, our data strongly suggested that allicin treatment can exert protective effects against PD related neuronal injury through inhibiting oxidative stress and mitochondrial dysfunction with dynamic changes.


Sign in / Sign up

Export Citation Format

Share Document