scholarly journals When Green Infrastructure Turns Grey: Implications of Overdesign for Plant Water Stress

Author(s):  
Min-cheng Tu ◽  
Joshua Caplan ◽  
Sasha Eisenman ◽  
Bridget Wadzuk

Overdesign is a common strategy used by green infrastructure (GI) designers to account for unexpected performance loss, but such a strategy can create undesirable plant responses if it decreases water availability. The seasonal and event-based stomatal conductance data of two woody plant species in a green infrastructure (GI) was analyzed. The GI is a tree trench composed of five tree pits (each one was planted with a tree) in an infiltration bed. Runoff collected from the street was supplied to the bottom of the infiltration bed, although the system never filled completely indicating there was capacity for more runoff than what was observed over 3 years and the infiltration bed was overdesigned. Between the two tree species, evidence suggested that the root system of London plane spread beyond the boundary of the GI system and reached a subsurface water source, while that of hybrid maple did not. London plane showed a slower response to water added in the tree pit soil, which can indicate the reduced dependence on GI soil water after plants have reached an alternative water source. Such reduction is not favored because it defeats the purpose of having plants in GI systems. Designs using root barriers, appropriate plant species selection, etc. are recommended to avoid unwanted root spread. This study also found that GI design relying on upward water movements should be avoided because such design creates a narrow capillary zone on top of a saturated zone, which does not encourage transpiration.

Water ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 573
Author(s):  
Min-cheng Tu ◽  
Joshua Caplan ◽  
Sasha Eisenman ◽  
Bridget Wadzuk

Green infrastructure (GI) systems are often overdesigned. This may be a byproduct of static sizing (e.g., accounting for a design storm’s runoff volume but not exfiltration rates) or may be deliberate (e.g., buffering against performance loss through time). In tree trenches and other GI systems that require stormwater to accumulate in an infiltration bed before it contacts the planting medium, overdesign could reduce plant water availability significantly. This study investigated the hydrological dynamics and water relations of an overdesigned tree trench system and identified factors contributing to, compounding, and mitigating the risk of plant stress. Water in the infiltration bed reached soil pits only once in three years, with that event occurring during a hydrant release. Moreover, minimal water was retained in soil pits during the event due to the hydraulic properties of the soil media. Through a growing season, one of the two tree types frequently experienced water stress, while the other did so only rarely. These contrasting responses can likely be attributed to roots being largely confined to the soil pits vs. reaching a deeper water source, respectively. Results of this study demonstrate that, in systems where soil pits are embedded in infiltration beds, overdesign can raise the storm size required for water to reach the soil media, reducing plant water availability between storms, and ultimately inducing physiological stress.


Author(s):  
Min-cheng Tu ◽  
Joshua S. Caplan ◽  
Sasha W. Eisenman ◽  
Bridget M Wadzuk

Green infrastructure systems are often overdesigned. This may be a byproduct of static sizing (e.g., accounting for a design storm’s runoff volume but not exfiltration rates) or may be deliberate (e.g., buffering against performance loss through time). Regardless, overdesign may compromise plants’ access to water in systems where soil pits are embedded in infiltration beds. It could raise the storm size required for water to reach soil pits, reducing water availability between storms, which could ultimately induce plant physiological stress. This study investigated the hydrological dynamics and water relations of a tree trench system suspected to have been overbuilt and identified factors contributing to, compounding, and mitigating the risk of plant stress. Results provided strong evidence that the abovementioned processes played out. Water in the infiltration bed reached soil pits only once in three years, with that event occurring during a hydrant release. Moreover, minimal water was retained in the soil pit during the event due to the hydraulic properties of the soil media. Through a growing season, one of the two tree types frequently experienced water stress, while the other did so only rarely. These contrasting responses can likely be attributed to roots either being largely confined to the soil pits or reaching a deeper water source. Implications of these results for green infrastructure design are considered.


1975 ◽  
Vol 7 (1) ◽  
pp. 111-115 ◽  
Author(s):  
John P. Warren ◽  
Lonnie L. Jones

Texas Gulf Coast areas near Houston have been affected to an increasing degree by land subsidence in recent years. Sinking of the surface has reached critical proportions in many areas, and subsidence of as much as nine feet has occurred since 1943. Physical effects have been extensive, affecting over 3,000 square miles, and economic effects have been aggravated by the approximity of much of the area to bay waters. Subsidence has resulted in significant damage and property loss, from both permanent salt water inundation and temporary flooding due to storm-related tides and rains.Industrial, municipal and agricultural demands for water have increased sharply in recent years. Engineers.have linked subsidence to the decline of subsurface water levels due to heavy groundwater withdrawals. An alternative water source, the importation and treatment of surface water, has been introduced, but relatively high prices have slowed its acceptance.


2021 ◽  
Vol 9 ◽  
Author(s):  
Chen Wang ◽  
Shuguang Jian ◽  
Hai Ren ◽  
Junhua Yan ◽  
Nan Liu

Plant functional traits are fundamental to the understanding of plant adaptations and distributions. Recently, scientists proposed a trait-based species selection theory to support the selection of suitable plant species to restore the degraded ecosystems, to prevent the invasive exotic species and to manage the sustainable ecosystems. Based on this theory, in a previous study, we developed a species screening model and successfully applied it to a project where plant species were selected for restoring a tropical coral island. However, during this process we learned that a software platform is necessary to automate the selection process because it can flexible to assist users. Here, we developed a generalized software platform called the “Restoration Plant Species Selection (RPSS) Platform.” This flexible software is designed to assist users in selecting plant species for particular purposes (e.g., restore the degraded ecosystems and others). It is written in R language and integrated with external R packages, including the packages that computing similarity indexes, providing graphic outputs, and offering web functions. The software has a web-based graphical user interface that allows users to execute required functions via checkboxes and buttons. The platform has cross-platform functionality, which means that it can run on all common operating systems (e.g., Windows, Linux, macOS, and others). We also illustrate a successful case study in which the software platform was used to select suitable plant species for restoration purpose. The objective of this paper is to introduce the newly developed software platform RPSS and to provide useful guidances on using it for various applications. At this step, we also realized that the software platform should be constantly updated (e.g., add new features) in the future. Based on the existing successful application and the possible updates, we believe that our RPSS software platform will have broader applications in the future.


2020 ◽  
Vol 8 (6) ◽  
pp. 2509-2512

Catchments are most important for the purpose of practicing irrigation and recharging groundwater by collecting water during the rainy season so that the nearby land will be in surplus quantity of groundwater due to the continues percolation of water from the catchments, even the stored water in the form of catchments will be used as an alternative water source for other requirements apart from the irrigation practices such as for industries and other developmental activities taking place nearby the catchments. Year by year it was noticed that in the world scenario the pollutant concentration is keep on increasing especially water and air pollution due to the excessive load of population that is increasing from the rural to urban areas [10]. Coming to water pollution the major portion of pollution is increasing in the surface water bodies [4] due to various activities like surface runoff, intentionally releasing of untreated effluents from the nearby industries into the catchments [8] and the agricultural runoff etc, whatever the reason there is an immediate need and an emergency to monitor these catchments as the average rainfall is gradually decreasing due to the changing climatic conditions like global warming which leads to the reduced availability of water in the surface water bodies at the other side the existing water is being contaminated [5] by the activities of nearby people. The impact will be severe when the same situation continues in the days to come where the living standards of the people will be decreased at a notable level and the impact will be much more severe on the irrigated land which depends on the catchments. The study has done at Kolleru Lake in west godavari district, Andhra Pradesh. Collected Six Water samples from six locations around the lake for analysis [7] and then the results of the analysis compared with Central Pollution Control Board 1979and Indian standards 1982 guidelines for water in the surface water bodies to find out the present scenario of lake water.


2021 ◽  
Vol 9 (2) ◽  
pp. 20-33
Author(s):  
Hassan Al-Badry ◽  
Mohammed S. Shamkhi

AbstractGroundwater is an important water source, especially in arid and semi-arid areas. Recharge is critical to managing and analyzing groundwater resources despite estimation difficulty due to temporal and spatial change. The study aim is to estimate annual groundwater recharge for the eastern Wasit Province part, Iraq. Where suffers from a surface water shortage due to the region's high elevation above Tigris River water elevation by about 60 m, it is necessary to search for alternative water sources, such as groundwater use. The spatially distributed WetSpass model was used to estimate the annual recharge. The inputs for the model were prepared using the ARC-GIS program, which includes the topography and slope grid, soil texture grid, land use, groundwater level grid, and meteorological data grids for the study area for the period (2014-2019). The result shows that the annual recharge calculated using the WetSpass model (2014-2019) varied of 0 to 65.176 mm/year at an average of 27.117 mm/year, about 10.8%, while the rate of the surface runoff was 5.2% and Evapotranspiration formed 83.33% of the annual rainfall rate of 251.192 mm. The simulation results reveal that the WetSpass model simulates the components of the hydrological water budget correctly. For managing and planning available water resources, a best grasp of the simulation of long-range average geographical distribution around the water balance components is beneficial.


2021 ◽  
Vol 16 (1) ◽  
pp. 18-25
Author(s):  
Fauziah Ismahyanti ◽  
Rosmawita Saleh ◽  
Arris Maulana

This research is done to plan rainwater harvesting so that it can be used as an alternative water source on the campus B UNJ so it is expected to reduce groundwater use that can cause a puddle. The method used in the PAH development plan is a water balance method. This method compares the level of demand with water volume that can be accommodated or the availability of water (supply). Based on the results of the analysis, it was found that the potential for rainwater in the FIO office building A was 1773.95 m3 , FMIPA building B was 1904.62 m3 , the FIO lecture building C was 1613.21 m3 and the Ulul Albab mosque was 512.16 m3 . Potential rainwater obtained cistern PAH capacity of 200 m3 by saving water needs by 30% in building A FIO, building B FMIPA, and building C FIO. The capacity of the PAH cistern is 80 m3 by saving the water needs of the Ulul Albab mosque by 13.3%. Placement of the PAH cistern under the ground with a ground water system. Ecodrainage application by utilizing the PAH system can reduce drainage load by 0.158 m3 /second or 13.9% from rainwater runoff.


2019 ◽  
Vol 11 (19) ◽  
pp. 5220 ◽  
Author(s):  
Dimitra Lazaridou ◽  
Anastasios Michailidis ◽  
Konstantinos Mattas

The present study attempts to estimate individuals’ willingness to pay for recycled water irrigation, in order to enhance the water supply and ensure the continuation of irrigated agriculture in Nestos catchment. Contingent valuation method has been developed for the investigation of farmers’ preferences, in monetary terms, to adopt this alternative water source for irrigation purposes. The applied method is regularly followed in the framework of environmental valuation. The results of the survey are based on data collected from questionnaires, which were answered by respondents at a river basin scale. In a representative sample of 302 farmers, we find that 64.2% of them expressed a positive stance towards using recycled water, a fact that results in lower environmental impacts. However, findings indicate that participants are willing to pay a significantly less amount of money than they already pay, for freshwater. Additionally, the analysis demonstrates that the use of recycled water in agriculture is more acceptable to respondents who are aware of its environmental benefits. Therefore, the provision of complete information on the welfare of using recycled water for irrigation to farmers may lead to greater adoption intention and a greater environmental benefit.


Sign in / Sign up

Export Citation Format

Share Document