scholarly journals Weighting the Key Features Affecting Supplier Selection using Machine Learning Techniques

Author(s):  
Ahmad Abdulla ◽  
George Baryannis ◽  
Ibrahim Badi

Supplier selection is an important part of supply chain management (SCM) for any organisation to achieve their objectives. The problem has attracted great interest from academics and practitioners. The selection process starts with determining the most important criteria out of a wide range. Many academic researchers apply multi-criteria decision-making (MCDM) techniques for supplier selection. However, the complexity of such approaches may increase significantly, especially when considering a large number of suppliers and selection criteria. This paper proposes an integrated approach combining machine learning classification with the Analytic Hierarchy Process (AHP) to select and evaluate the most suitable supplier. A Decision Tree (DT) classifier is used to select the most important criteria, instead of applying AHP on the complete set of criteria. The applicability of the approach is demonstrated using data from Libyan companies. Results show that decision trees can successfully lead to a most important subset of selection criteria, which would lead to a less complex application of AHP.

2022 ◽  
Author(s):  
Sahan M. Vijithananda ◽  
Mohan L. Jayatilake ◽  
Badra Hewavithana ◽  
Teresa Gonçalves ◽  
Luis M. Rato ◽  
...  

Abstract Background: Diffusion-weighted (DW) imaging is a well-recognized magnetic resonance imaging (MRI) technique that is being routinely used in brain examinations in modern clinical radiology practices. This study focuses on extracting demographic and texture features from MRI Apparent Diffusion Coefficient (ADC) images of human brain tumors, identifying the distribution patterns of each feature and applying Machine Learning (ML) techniques to differentiate malignant from benign brain tumors.Methods: This prospective study was carried out using 1599 labeled MRI brain ADC image slices, 995 malignant, 604 benign from 195 patients who were radiologically diagnosed and histopathologically confirmed as brain tumor patients.The demographics, mean pixel values, skewness, kurtosis, features of Grey Level Co-occurrence Matrix (GLCM), mean, variance, energy, entropy, contrast, homogeneity, correlation, prominence and shade, were extracted from MRI ADC images of each patient.At the feature selection phase, the validity of the extracted features were measured using ANOVA f-test. Then, these features were used as input to several Machine Learning classification algorithms and the respective models were assessed.Results: According to the results of ANOVA f-test feature selection process, two attributes: skewness (3.34) and GLCM homogeneity (3.45) scored the lowest ANOVA f-test scores. Therefore both features were excluded in continuation of the experiment. From the different tested ML algorithms, the Random Forest classifier was chosen to build the final ML model since it presented the highest accuracy. The final model was able to predict malignant and benign neoplasms with an 90.41% accuracy after the hyper parameter tuning process.Conclusion: This study concludes that the above mentioned features (except skewness and GLCM homogeneity) are informative to identify and differentiate malignant from benign brain tumors. Moreover, they enable the development of a high-performance ML model that has the ability to assist in the decision-making steps of brain tumor diagnosis process, prior to attempting invasive diagnostic procedures such as brain biopsies.


2016 ◽  
Vol 5 (3) ◽  
Author(s):  
Surajit Bag

This paper argues the use of Analytic Hierarchy Process in service supplier selection process. The literature has evidence of important criteria for supply supplier selection process. However, there is a dearth of studies on service supplier selection process. To address this gap, this paper firstly systematically reviews the existing procurement literature, secondly, it argues for the use of alternative methods research to address questions related to ranking of selection criteria, and thirdly, it proposes and illustrates the use of Analytic Hierarchy Process to analyze the identified criteria. The paper concludes with limitations and further research directions.


Author(s):  
Tatireddy Reddy ◽  
Jonnadula Harikiran

Hyperspectral imaging is used in a wide range of applications. When used in remote sensing, satellites and aircraft are employed to collect the images, which are used in agriculture, environmental monitoring, urban planning and defence. The exact classification of ground features in the images is a significant research issue and is currently receiving greater attention. Moreover, these images have a large spectral dimensionality, which adds computational complexity and affects classification precision. To handle these issues, dimensionality reduction is an essential step that improves the performance of classifiers. In the classification process, several strategies have produced good classification results. Of these, machine learning techniques are the most powerful approaches. As a result, this paper reviews three different types of hyperspectral image machine learning classification methods: cluster analysis, supervised and semi-supervised classification. Moreover, this paper shows the effectiveness of all these techniques for hyperspectral image classification and dimensionality reduction. Furthermore, this review will assist as a reference for future research to improve the classification and dimensionality reduction approaches.


2018 ◽  
Author(s):  
Sherif Tawfik ◽  
Olexandr Isayev ◽  
Catherine Stampfl ◽  
Joseph Shapter ◽  
David Winkler ◽  
...  

Materials constructed from different van der Waals two-dimensional (2D) heterostructures offer a wide range of benefits, but these systems have been little studied because of their experimental and computational complextiy, and because of the very large number of possible combinations of 2D building blocks. The simulation of the interface between two different 2D materials is computationally challenging due to the lattice mismatch problem, which sometimes necessitates the creation of very large simulation cells for performing density-functional theory (DFT) calculations. Here we use a combination of DFT, linear regression and machine learning techniques in order to rapidly determine the interlayer distance between two different 2D heterostructures that are stacked in a bilayer heterostructure, as well as the band gap of the bilayer. Our work provides an excellent proof of concept by quickly and accurately predicting a structural property (the interlayer distance) and an electronic property (the band gap) for a large number of hybrid 2D materials. This work paves the way for rapid computational screening of the vast parameter space of van der Waals heterostructures to identify new hybrid materials with useful and interesting properties.


2021 ◽  
Vol 15 ◽  
Author(s):  
Alhassan Alkuhlani ◽  
Walaa Gad ◽  
Mohamed Roushdy ◽  
Abdel-Badeeh M. Salem

Background: Glycosylation is one of the most common post-translation modifications (PTMs) in organism cells. It plays important roles in several biological processes including cell-cell interaction, protein folding, antigen’s recognition, and immune response. In addition, glycosylation is associated with many human diseases such as cancer, diabetes and coronaviruses. The experimental techniques for identifying glycosylation sites are time-consuming, extensive laboratory work, and expensive. Therefore, computational intelligence techniques are becoming very important for glycosylation site prediction. Objective: This paper is a theoretical discussion of the technical aspects of the biotechnological (e.g., using artificial intelligence and machine learning) to digital bioinformatics research and intelligent biocomputing. The computational intelligent techniques have shown efficient results for predicting N-linked, O-linked and C-linked glycosylation sites. In the last two decades, many studies have been conducted for glycosylation site prediction using these techniques. In this paper, we analyze and compare a wide range of intelligent techniques of these studies from multiple aspects. The current challenges and difficulties facing the software developers and knowledge engineers for predicting glycosylation sites are also included. Method: The comparison between these different studies is introduced including many criteria such as databases, feature extraction and selection, machine learning classification methods, evaluation measures and the performance results. Results and conclusions: Many challenges and problems are presented. Consequently, more efforts are needed to get more accurate prediction models for the three basic types of glycosylation sites.


2008 ◽  
Vol 27 (1) ◽  
pp. 49-62
Author(s):  
Sameer Kumar ◽  
John Bisson

With a growing global economy and competition and increased outsourcing, the supplier selection process has gained more focus and importance within many business enterprises for developing an integrated supply network. Analytic Hierarchy Process (AHP) has been identified as an ideal multi-objective decision support tool to assist firms in completing the supplier selection process as part of strengthening their procurement strategies. This paper involved secondary research methods to gain an understanding of AHP, its various applications, and exploration of how to incorporate non-traditional selection criteria such as environmental criterion into the process. AHP's application for optimal supplier selection to support integrated procurement process is illustrated through an example of a Medical Device Manufacturer (MDM), known for established supplier-customer partnerships and alliances. Major limitation in studying this example included data availability to complete a comprehensive AHP decision management model. However, it was found that AHP is a powerful, structured but flexible method of addressing the multi-criteria supplier selection decision that facilitates building an integrated supply chain.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Majid Amirfakhrian ◽  
Mahboub Parhizkar

AbstractIn the next decade, machine vision technology will have an enormous impact on industrial works because of the latest technological advances in this field. These advances are so significant that the use of this technology is now essential. Machine vision is the process of using a wide range of technologies and methods in providing automated inspections in an industrial setting based on imaging, process control, and robot guidance. One of the applications of machine vision is to diagnose traffic accidents. Moreover, car vision is utilized for detecting the amount of damage to vehicles during traffic accidents. In this article, using image processing and machine learning techniques, a new method is presented to improve the accuracy of detecting damaged areas in traffic accidents. Evaluating the proposed method and comparing it with previous works showed that the proposed method is more accurate in identifying damaged areas and it has a shorter execution time.


2021 ◽  
Author(s):  
K. Emma Knowland ◽  
Christoph Keller ◽  
Krzysztof Wargan ◽  
Brad Weir ◽  
Pamela Wales ◽  
...  

<p>NASA's Global Modeling and Assimilation Office (GMAO) produces high-resolution global forecasts for weather, aerosols, and air quality. The NASA Global Earth Observing System (GEOS) model has been expanded to provide global near-real-time 5-day forecasts of atmospheric composition at unprecedented horizontal resolution of 0.25 degrees (~25 km). This composition forecast system (GEOS-CF) combines the operational GEOS weather forecasting model with the state-of-the-science GEOS-Chem chemistry module (version 12) to provide detailed analysis of a wide range of air pollutants such as ozone, carbon monoxide, nitrogen oxides, and fine particulate matter (PM2.5). Satellite observations are assimilated into the system for improved representation of weather and smoke. The assimilation system is being expanded to include chemically reactive trace gases. We discuss current capabilities of the GEOS Constituent Data Assimilation System (CoDAS) to improve atmospheric composition modeling and possible future directions, notably incorporating new observations (TROPOMI, geostationary satellites) and machine learning techniques. We show how machine learning techniques can be used to correct for sub-grid-scale variability, which further improves model estimates at a given observation site.</p>


Author(s):  
Liangyuan Hu ◽  
Bian Liu ◽  
Jiayi Ji ◽  
Yan Li

Background Stroke is a major cardiovascular disease that causes significant health and economic burden in the United States. Neighborhood community‐based interventions have been shown to be both effective and cost‐effective in preventing cardiovascular disease. There is a dearth of robust studies identifying the key determinants of cardiovascular disease and the underlying effect mechanisms at the neighborhood level. We aim to contribute to the evidence base for neighborhood cardiovascular health research. Methods and Results We created a new neighborhood health data set at the census tract level by integrating 4 types of potential predictors, including unhealthy behaviors, prevention measures, sociodemographic factors, and environmental measures from multiple data sources. We used 4 tree‐based machine learning techniques to identify the most critical neighborhood‐level factors in predicting the neighborhood‐level prevalence of stroke, and compared their predictive performance for variable selection. We further quantified the effects of the identified determinants on stroke prevalence using a Bayesian linear regression model. Of the 5 most important predictors identified by our method, higher prevalence of low physical activity, larger share of older adults, higher percentage of non‐Hispanic Black people, and higher ozone levels were associated with higher prevalence of stroke at the neighborhood level. Higher median household income was linked to lower prevalence. The most important interaction term showed an exacerbated adverse effect of aging and low physical activity on the neighborhood‐level prevalence of stroke. Conclusions Tree‐based machine learning provides insights into underlying drivers of neighborhood cardiovascular health by discovering the most important determinants from a wide range of factors in an agnostic, data‐driven, and reproducible way. The identified major determinants and the interactive mechanism can be used to prioritize and allocate resources to optimize community‐level interventions for stroke prevention.


Sign in / Sign up

Export Citation Format

Share Document