scholarly journals Pro-Inflammatory Interlekin-33 Induces Dichotomic Effects on Cell Proliferation in Normal Gastric Epithelium and Gastric Cancer

Author(s):  
Laura Francesca Pisani ◽  
Gianeugenio Tontini ◽  
Carmine Gentile ◽  
Beatrice Marinoni ◽  
Isabella Teani ◽  
...  

Background: Interleukin (IL)-33 is a member of interleukin (IL)-1 family of cytokines which has been linked to the development of inflammatory conditions and cancer in the gastrointestinal tract. This study is designed to investigate whether IL-33 has direct effect on human gastric epithelial cells (GES-1) and on human gastric adenocarcinoma cell line (AGS) and gastric carcinoma cell line (NCI-N87), assessing its role in regulation of cell proliferation and cell cycle, apoptosis and necrosis. Cell cycle regulation was also determined in ex vivo gastric cancer samples obtained during endoscopy and surgical procedures. Methods: cell lines and tissue samples underwent stimulation with rhIL-33. Proliferation was assessed by XTT and CFSE assay, we also evaluated apoptosis by Caspase 3/8 Activity assay and Annexin V assays. Cell cycle were analyzed by means of Propidium Iodine assay and gene expression regulation was assessed by RT-PCR Profiling. Results: we found that IL-33 has an antiproliferative and proapoptotic effect on cancer cell line, while it can stimulate proliferation and reduce apoptosis in normal epithelial cell line. These effects are also confirmed by the analysis of cell cycle gene expression which showed a reduced expression of proproliferative genes in cancer cells, in particular genes involved in G0/G1 and G2/M checkpoint. These results are confirmed by the gene expression analysis on surgical and bioptic specimens. Conclusions: the aforementioned results indicate that IL-33 may be involved in cell proliferation in an environment- and cell type-dependent fashion.

2021 ◽  
Vol 22 (11) ◽  
pp. 5792
Author(s):  
Laura Francesca Pisani ◽  
Gian Eugenio Tontini ◽  
Carmine Gentile ◽  
Beatrice Marinoni ◽  
Isabella Teani ◽  
...  

Interleukin (IL)-33 is a member of the interleukin (IL)-1 family of cytokines linked to the development of inflammatory conditions and cancer in the gastrointestinal tract. This study is designed to investigate whether IL-33 has a direct effect on human gastric epithelial cells (GES-1), the human gastric adenocarcinoma cell line (AGS), and the gastric carcinoma cell line (NCI-N87) by assessing its role in the regulation of cell proliferation, migration, cell cycle, and apoptosis. Cell cycle regulation was also determined in ex vivo gastric cancer samples obtained during endoscopy and surgical procedures. Cell lines and tissue samples underwent stimulation with rhIL-33. Proliferation was assessed by XTT and CFSE assays, migration by wound healing assay, and apoptosis by caspase 3/7 activity assay and annexin V assay. Cell cycle was analyzed by means of propidium iodine assay, and gene expression regulation was assessed by RT-PCR profiling. We found that IL-33 has an antiproliferative and proapoptotic effect on cancer cell lines, and it can stimulate proliferation and reduce apoptosis in normal epithelial cell lines. These effects were also confirmed by the analysis of cell cycle gene expression, which showed a reduced expression of pro-proliferative genes in cancer cells, particularly in genes involved in G0/G1 and G2/M checkpoints. These results were confirmed by gene expression analysis on bioptic and surgical specimens. The aforementioned results indicate that IL-33 may be involved in cell proliferation in an environment- and cell-type-dependent manner.


Author(s):  
Laura Francesca Pisani ◽  
Gianeugenio Tontini ◽  
Carmine Gentile ◽  
Beatrice Marinoni ◽  
Isabella Teani ◽  
...  

Background: Interleukin (IL)-33 is a member of interleukin (IL)-1 family of cytokines which has been linked to the development of inflammatory conditions and cancer in the gastrointestinal tract. This study is designed to investigate whether IL-33 has direct effect on human gastric epithelial cells (GES-1) and on human gastric adenocarcinoma cell line (AGS), assessing its role in regulation of cell proliferation and cell cycle, apoptosis and necrosis. Cell cycle regulation was also determined in ex vivo gastric cancer samples obtained during endoscopy and surgical procedures. Methods: cell lines and tissue samples underwent stimulation with rhIL-33. Proliferation was assessed by XTT and CFSE assay, we also evaluated apoptosis and necrosis by Caspase 3/8 Activity assay and Propidium Iodine/Annexin V assays. Cell cycle were analyzed by means of Propidium Iodine assay and gene expression regulation was assessed by RT-PCR Profiling. Results: we found that IL-33 has an antiproliferative and proapoptotic effect on cancer cell line, while it can stimulate proliferation and reduce apoptosis in normal epithelial cell line. These effects are also confirmed by the analysis of cell cycle gene expression which showed a reduced expression of proproliferative genes in AGS cells, in particular genes involved in G0/G1 and G2/M checkpoint. These results are confirmed by the gene expression analysis on surgical and bioptic specimens. Conclusions: the aforementioned results indicate that IL-33 may be involved in cell proliferation in an environment- and cell type-dependent fashion.


Biochemistry ◽  
2003 ◽  
Vol 42 (7) ◽  
pp. 2116-2121 ◽  
Author(s):  
Telma T. Schwindt ◽  
Fábio L. Forti ◽  
Maria Ap. Juliano ◽  
Luiz Juliano ◽  
Hugo A. Armelin

2021 ◽  
Author(s):  
Liping Pang ◽  
Hua Tian ◽  
Xuejun Gao ◽  
Weiping Wang ◽  
Xiaoyan Wang ◽  
...  

KMT2D, as one of the key histone methyltransferases responsible for histone 3 lysine 4 methylation (H3K4me), has been proved to be the main pathogenic gene of Kabuki syndrome disease. Kabuki patients with KMT2D mutation frequently present various dental abnormalities, including abnormal tooth number and crown morphology. However, the exact function of KMT2D in tooth development remains unclear. In this report, we systematically elucidate the expression pattern of KMT2D in early tooth development and outline the molecular mechanism of KMT2D in dental epithelial cell line. KMT2D and H3K4me mainly expressed in enamel organ and Kmt2d knockdown led to the reduction of cell proliferation activity and cell cycling activity in dental epithelial cell line (LS8). RNA-seq and KEGG enrichment analysis screened out several important pathways that affected by Kmt2d knockdown including Wnt signaling. Consistently, Top/Fop assay confirmed the reduction of Wnt signaling activity in Kmt2d knockdown cells. Nuclear translocation of β-catenin was significantly reduced by Kmt2d knockdown, while lithium chloride (LiCl) partially reversed this phenomenon. Moreover, LiCl partially reversed the decrease of cell proliferation activity and G1 arrest, and the downregulation of Wnt-related genes in Kmt2d knockdown cells. In summary, this study uncovered a pivotal role of histone methyltransferase KMT2D in dental epithelium proliferation and cell cycle homeostasis partially through regulating Wnt/β-catenin signaling. The findings are important for understanding the role of KMT2D and histone methylation in tooth development.


2019 ◽  
Author(s):  
Yue Pan ◽  
Weixing Chen ◽  
Xin Yuan ◽  
Hongpeng Lu ◽  
Lei Xu ◽  
...  

Abstract Background: Recent studies have shown that microRNA-99a(miR-99a)plays a key role in the development of virious malignancies; however, its relationship with gastric cancer remains unclear. In this study, we investigated the functions and potential mechanisms of miR-99a in gastric cancer. Methods: Real-time qRT-PCR was used to assess the expression levels of miR-99a in gastric cancer tissue samples and cell lines compared to their matched adjacent normal tissues and a normal gastric mucosa epithelial cell line, respectively. SGC-7901 cells were transfected with miR-99a mimics and negative controls to determine the effects of miR-99a overexpression on cell proliferation, cell cycle transition, migration and invasion of gastric cancer cells in vitro . The role of miR-99a in endogenous c-Src expression in gastric cancer cells was also investigated by qRT-PCR and Western blotting. Results: Our results showed a significant increase in miR-99a expression in both gastric cancer tissues and cells compared to normal tissues and cells. Overexpression of miR-99a significantly promoted the cell proliferation, migration and invasion of gastric cancer cells compared to normal cells, with a concurrent increase in the S+G2 phases of the cell cycle. Further investigations found that miR-99a overexpression led to significant upregulation of endogenous c-Src. Conclusion: Taken together, our findings suggest that miR-99a may act as a tumour promoter in the pathogenesis of gastric cancer by indirectly modulating c-Src expression.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 254-254
Author(s):  
Michele Milella ◽  
Maria Rosaria Ricciardi ◽  
Chiara Gregorj ◽  
Fabiana De Cave ◽  
Steven L. Abrams ◽  
...  

Abstract The Raf/MEK/ERK signaling module plays a pivotal role in the regulation of cell proliferation, survival, and differentiation. Our group, among others, has recently demonstrated that this pathway is frequently dysregulated in hematological malignancies and may constitute an attractive therapeutic target, particularly in AML. Here we investigated the effects of PD0325901, a novel MEK inhibitor, on phospho-protein expression, gene expression profiles, cell proliferation, and apoptosis in cell line models of AML, ALL, multiple myeloma (MM), ex vivo-cultured primary AML blasts, and oncogene-transformed hematopoietic cells. AML cell lines (OCI-AML2, OCI-AML3, HL-60) were strikingly sensitive to PD0325901 (IC50: 5–19 nM), NB4 (APL) and U266 (MM) showed intermediate sensitivity (IC50: 822 and 724 nM), while all the lymphoid cell lines tested and the myeloid cell lines U937 and KG1 were resistant (IC50 > 1000 nM). Cell growth inhibition was due to inhibition of cell cycle progression and induction of apoptosis. A statistically significant reduction in the proportion of S-phase cells (p=0.01) and increase in the percentage of apoptotic cells (p=0.019) was also observed in 18 primary AML samples in response to 100 nM PD0325901. Analysis of the correlation between sensitivity/resistance to PD0325901 and Ras/Raf mutation status is currently ongoing. PD0325901 effects were also examined in a panel of IL-3-dependent murine myeloid FDC-P1 cell lines transformed to grow in response to 11 different oncogenes in the absence of IL-3. Fms-, Ras-, Raf-1-, B-Raf-, MEK1-, IGF-1R-, and STAT5a-transformed FDC-P1 cells were very sensitive to PD0325901 (IC50: ~ 1 nM), while A-Raf-, BCR-ABL-, EGFR- or Src-transformed cells were 10 to 100 fold less sensitive (IC50: 10 to 100 nM); the parental, IL-3 dependent FDC-P1 cell line had an IC50 > 1000 nM. Analysis of the phosphorylation levels of 18 different target proteins after treatment with 10 nM PD0325901 showed a 5- to 8-fold reduction in ERK-1/2, observed only in sensitive cell lines, and a 2-fold reduction in JNK and STAT3 phosphorylation. PD0325901 (10 nM) treatment also profoundly altered the gene expression profile of the sensitive cell line OCI-AML3: 96 genes were modulated after 24 h (37 up- and 59 down-regulated), most of which involved in cell cycle regulation. Changes in cyclin D1 and D3, cyclin E, and cdc 25A were also validated at the protein level. Overall, PD0325901 shows potent growth-inhibitory and pro-apoptotic activity, indicating that MEK may be an appropriate therapeutic target in an array of different hematological malignancies. Further preclinical/clinical development of this compound is warranted, particularly in myeloid leukemias.


2019 ◽  
Vol 2019 ◽  
pp. 1-6 ◽  
Author(s):  
Zhiying Xu ◽  
Hui Chen ◽  
Bin Yang ◽  
Xiangfeng Liu ◽  
Xiaoli Zhou ◽  
...  

Background. Long noncoding RNAs (lncRNAs) are a group of noncoding RNA with the length of more than 200nt. They have been identified as important diagnostic and prognostic molecules for many cancers and play an important role in the development of cancers. However, their clinical value and roles in gastric cancer (GC) remain unclear.Methods. The expression levels of HOTAIR in 54 GC tissues and their matched adjacent nontumor tissues from GC patients and 24 normal mucosa or those with minimal gastritis as healthy controls were determined by qRT-PCR. The expression levels of HOTAIR in human GC cell lines and a normal gastric epithelium cell line were also assessed by qRT-PCR. The potential relationships between its level in GC tissues and the clinicopathological features were analyzed. Furthermore, a receiver operating characteristic (ROC) curve was constructed. Additionally, the correlation between this lncRNA and overall survival (OS) was analyzed. SiRNA transfection was used to silence the expression of HOTAIR in GC cells. And cell proliferation and cell cycle assays were employed to determine the effect of HOTAIR on GC cell growth. Western blot was performed for the detection of the P53, P21, and Bcl2 proteins.Results. The expression levels of HOTAIR were significantly upregulated in GC tissues and cell lines. Increased HOTAIR was associated with tumor differentiation, lymph node and distant metastasis, and clinical stage. Furthermore, the area under the ROC curve (AUC) was up to 0.8416 (95 % CI=0.7661 to 0.9170, P<0.0001). The sensitivity and specificity were 66.67 and 87.04%, respectively. The correlation between HOTAIR expression and overall survival (OS) was statistically significant. The hazard ratio was 2.681, and 95% CI of ratio was 1.370 to 5.248. In addition, knockdown of HOTAIR can inhibit GC cell growth and affect cell cycle distribution. And knockdown of HOTAIR could enhance the protein levels of P21 and P53.Conclusion. The present study demonstrated that HOTAIR was highly expressed in GC tissues and may serve as a potential diagnostic and prognostic biomarker for GC. And HOTAIR promoted GC cell proliferation.


2021 ◽  
Author(s):  
Lenno Krenning ◽  
Stijn Sonneveld ◽  
Marvin E Tanenbaum

Accurate control of the cell cycle is critical for development and tissue homeostasis and requires precisely-timed expression of many genes. Cell cycle gene expression is regulated through transcriptional and translational control, as well as through regulated protein degradation. Here, we show that widespread and temporally-controlled mRNA decay acts as an additional mechanism for gene expression regulation during the cell cycle. We find that two waves of mRNA decay occur sequentially during the mitosis-to-G1 phase transition, and identify the deadenylase CNOT1 as a factor that contributes to mRNA decay during this cell cycle transition. Collectively, our data show that, akin to protein degradation, scheduled mRNA decay helps to reshape cell cycle gene expression as cells move from mitosis into G1 phase.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 3216-3216
Author(s):  
Florencia Palacios ◽  
Xiao J. Yan ◽  
Jacqueline C. Barrientos ◽  
Jonathan E. Kolitz ◽  
Steven L. Allen ◽  
...  

CLL develops from a small fraction of dividing monoclonal CD5+ B cells. The size and rate of growth of this proliferative fraction (PF) correlates inversely with time-to-first-treatment and directly with poor outcome prognostic markers. Furthermore, since the dividing cells upregulate DNA mutators such as AID and APOBEC family members, the PF has a greater propensity for acquiring new DNA abnormalities that can lead to more lethal disease. Hence, cells of the PF are important targets for therapy for patients with worst outcome category. The PF (CXCR4DimCD5Bright) differs by more than 1000 genes from the resting fraction (RF, CXCR4Bright CD5Dim); these genes relate to replication, migration, and regulation of gene expression. Some of these genes are also preferentially expressed in the PF of U-CLL cases. One such gene is Musashi 2 (MSI2). MSI2 regulates gene expression by binding consensus sequences of mRNA and blocking protein translation. High MSI2 expression is involved in proliferation of normal and malignant stem cells, tumorigenesis, and poor outcome. In CLL, high MSI2 mRNA expression has been identified in patients with worse prognosis. Nevertheless, nothing is known about the function of MSI2 in CLL cells. Therefore, we report studies of the biological role of MSI2 in B-CLL cells and its possible association with B-cell proliferation and CLL disease progression. First, we evaluated MSI2 protein levels by flow cytometry in CD19+CD5- and CD19+CD5+ cells from healthy donors (HDs; n=25) and in CD19+CD5+ from CLL patients (n=55). Higher MSI2 expression was observed in CLL than HD B cells, whereas no differences were found in CD19+CD5+ and CD19+CD5- cells from HDs. Also, MSI2 protein levels were higher in U-CLL than M-CLL, and M-CLL B cells express more MSI2 than HDs. Finally, MSI2 protein levels correlated with CD38, a CLL poor prognosis marker, suggesting MSI2 associates with poor prognosis in CLL. Within the leukemic clone, we observed 25% more MSI2 in the PF than the Int (defined as CXCR4intCD5int) and 15% more in the Int than the RF (PF>Int >RF). The PF contains 40% more MSI2 than the RF, suggesting the highest amounts of MSI2 protein are in dividing and recently-divided cells. Since CLL B cell proliferation occurs in the microenvironment of lymphoid organs, presumably delivered by external signals, we tested whether such signals could stimulate MSI2 expression. Results indicate that CD40L+IL4 and Toll-like 9 stimulation plus IL15 (TLR9+IL5) increase MSI2 synthesis in vitro 1.4 and 1.8 fold, respectively. The increases are associated with the appearance of phospho ERK and AKT. Also, inhibition of AKT signaling by a PI3K inhibitor decreases MSI2 levels, suggesting AKT is involved in MSI2 synthesis. In this regard, signals from the microenvironment inducing cell growth and proliferation promote MSI2 synthesis in B cells from CLL patients. In addition, cells entering the cell cycle (Ki-67+ cells, those incorporating the thymidine analogue EdU, and cells in S, G2 and M cell cycle phases) express higher MSI2 levels than quiescent cells. Furthermore, dividing cells contain higher MSI2 levels than non-dividing cells as determined by CFSE dilution. These results suggest that cells entering the cell cycle or recently dividing have greater MSI2 expression. Since high MSI2 levels associate with cell proliferation and its inhibition is said to promote apoptosis, we studied the effect of MSI2 downregulation in the CLL MEC1 cell line to determine if MSI2 is a potential therapeutic target for CLL. Our findings show that siRNAs decrease MSI2 mRNA (80%) and protein (40%) levels compared to negative controls. Downregulation of MSI2 in MEC1 led to cleaved caspase 3, TRAIL R1 and R2, FADD, TNFR1, P21, P27, phosho-p53, and decreased levels of inhibitors of apoptosis such as cIAP2 and survivin. Hence these data suggest downregulation of MSI2 in CLL cells could induce apoptosis. Thus, MSI2 levels are higher in B cells from poor outcome patients and also in the dividing/divided cells of the PF before and after stimulation. Also, MSI's downregulation induces apoptosis of CLL cell line. Therefore, we propose that MSI2 is a valuable target for therapeutic intervention. Inhibiting its function and its role in cell proliferation will likely abort clonal evolution and disease progression, and make CLL an even more chronic and manageable condition. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document