scholarly journals Developing Salinity Tolerate Trees for Challenging Sites and Urban Forests Based on the Inferences of Physiological Responses: Using Ulmus Pumila as an Example

Author(s):  
Deyu Mu ◽  
Chen Ding

Elevated salinity is one of the major environmental limitation factors of plant growth and development and salinity stress compromises the production and survival of plantation and urban forests and agricultural crops in the arid, semi-arid, and intertidal zones. Ulmus pumila, a salt- indigenous tree species in Asia and is widely deployed in salt-affected areas in China, and U.pumila is promising for multi-varietal forestry in plantation and urban forests. The comprehensive mechanism of the intraspecific salt tolerance is still not clear yet. Here, we investigated the physiological responses of the salinity stress based on the antioxidant enzyme activities, osmotic adjustments, and gas exchange among salt-tolerant U. pumila genotypes for 100 days under five different NaCl levels (0%, 0.3%, 0.5%, 0.7%, and 0.9% w/v) with natural surroundings and rain shade at age-2. Salt stress decreased height (HR), ground diameter (DR), and dry weight (biomass) were significantly different among genotypes. HR and performance indices were positively correlated with photosynthesis rate (Pn), apparent mesophyll conductance (AMC), and chlorophyll (CHLL) with (r= 0.7 - 0.8 ***), but were negatively related to the free proline, sugar, and protein accumulation (r=-0.5 ~ -0.7***). We found that high accumulation of sugars and more activities of SOD enzyme in leaf tissue contribute to the osmotic adjustment and ROS scavenging system under salinity treatment; the sugar content and SOD activity play key roles in U. pumila’s tolerance to salt stress, and are promising indicators for U. pumila species ex vitro selections. The ex vitro selection results align with the previous in vitro studies [37] and is promising for the MVF development.

HortScience ◽  
2018 ◽  
Vol 53 (11) ◽  
pp. 1640-1646 ◽  
Author(s):  
Fei Xiong ◽  
Jieren Liao ◽  
Yuanchun Ma ◽  
Yuhua Wang ◽  
Wanping Fang ◽  
...  

Camellia sinensis cultivars were treated with 5 mm putrescine (Put) under a range of sodium chloride (NaCl) concentrations. Plant performance, as indicated by various indicators associated with plant growing condition such as photosynthetic parameters and polyamine (PA) contents, especially the content of Put, was improved by the treatment. The extent of both Na+ accumulation and K+ loss increased. The activity levels of the antioxidant enzymes related to salt stress, such as superoxide dismutase (SOD), peroxidase (POD), and catalase, were significantly altered with different salt stress levels and showed a decrease in the general trend. Besides, tea polyphenols, the tea quality indicator, increased during the salinity treatment but decreased when we applied Put. These findings suggest that treatment with Put might constitute an effective means for alleviating salinity stress–induced injury through its positive effect on photosynthetic efficiency and for controlling reactive oxygen species (ROS) scavenging ability under appropriate salt stress levels.


Forests ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 406 ◽  
Author(s):  
Xingmin Geng ◽  
Yuemiao Zhang ◽  
Lianggui Wang ◽  
Xiulian Yang

The landscape application of sweet osmanthus (Osmanthus fragrans) with flower fragrance and high ornamental value is severely limited by salinity stress. Gamma irradiation applied to seeds enhanced their tolerance to salinity stress as reported in other plants. In this study, O. fragrans ‘Huangchuang Jingui’ seeds were pretreated with different doses of gamma irradiation, and tolerance of the seedlings germinated from the irradiated seeds to salinity stress and the changes of reactive oxygen species (ROS) production and ROS scavenging systems induced by gamma irradiation were observed. The results showed that seed pretreatment with different doses of gamma irradiation enhanced the tolerance of sweet osmanthus seedlings to salinity stress, and the positive effect induced by gamma irradiation was more remarkable with the increase of radiation dose (50–150 Gy). The pretreatment with high-dose irradiation decreased O2− production under salinity stress and mitigated the oxidative damage marked by a lower malondialdehyde (MDA) level, which could be related to the significant increase of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) activities in the seedlings germinated from the irradiated seeds compared to the corresponding control seedlings. In addition, the accumulation of proline in the irradiated seedlings may contribute to enhancing their tolerance to salt stress by the osmotic adjustment. The study demonstrated the importance of regulating plant ROS balance under salt stress and provided a potential approach to improve the tolerance of sweet osmanthus to salt stress.


2021 ◽  
Author(s):  
◽  
Gagandeep Jain

<p>Foliar betalainic plants are commonly found in dry and exposed environments such as deserts and sandbanks. This marginal habitat has led many researchers to hypothesise that foliar betalains provide tolerance to abiotic stressors such as strong light, drought, salinity and low temperatures. Among these abiotic stressors, soil salinity is a major problem for agriculture affecting approximately 20% of the irrigated lands worldwide. Betacyanins may provide functional significance to plants under salt stress although this has not been unequivocally demonstrated. The purpose of this thesis is to add knowledge of the various roles of foliar betacyanins in plants under salt stress. For that, a series of experiments were performed on Disphyma australe, which is a betacyanic halophyte with two distinct colour morphs in vegetative shoots.  In chapter two, I aimed to find the effect of salinity stress on betacyanin pigmentation in D. australe and it was hypothesised that betacyanic morphs are physiologically more tolerant to salinity stress than acyanic morphs. Within a coastal population of red and green morphs of D. australe, betacyanin pigmentation in red morphs was a direct result of high salt and high light exposure. Betacyanic morphs were physiologically more tolerant to salt stress as they showed greater maximum CO₂ assimilation rates, water use efficiencies, photochemical quantum yields and photochemical quenching than acyanic morphs. Contrary to this, the green morphs, although possessing the ability to synthesise betalains in flower petals, did not produce betalains in vegetative shoots in response to salt stress. Moreover, green morphs, in terms of leaf photosynthesis, performed poorly under salinity stress.  In chapter three I further investigated the physiological benefit of betacyanin accumulation in D. australe. I postulated that betacyanin in the leaves of D. australe can protect the salt stressed chloroplasts from harmful excessive light by absorbing significant amount of radiation. To test this, a novel experimental approach was used; the key biosynthetic step for betacyanin synthesis was identified, which was deficient in vegetative shoots of the green morphs. By supplying the product of this enzymatic reaction, L-DOPA, betacyanin synthesis could be induced in the leaves of green morphs. This model system was used to compare the photoprotective responses of red vs. green leaves. The L-DOPA induced betacyanic leaves showed similar responses (such as smaller reductions and faster recoveries of PSII and less H₂O₂ production than in the green leaves) to naturally betacyanic leaves when exposed to high light and salinity. The differences in photoinhibition between red and green leaves were attributed to the light absorbing properties of betacyanins. L-DOPA treated and naturally red leaves showed lower photoinactivation than green leaves when exposed to white or green light, although not when exposed to monochromatic (red) light.  In chapter four, I used a similar experimental model to that in the third chapter and showed that other than photoprotection, betacyanins in leaves may be involved in salt tolerance by enhancing toxic ion (such as Na⁺) sequestration in betacyanic epidermal cells, storing Na⁺ away from sensitive mesophyll tissue. The Na⁺ localization between red and green leaves was compared after salinity treatment by using a sodium binding stain (SBFI-AM) and Cryo-SEM analysis. L-DOPA treated and natural red leaves sequestered Na⁺ ions to the epidermal cell layer. In contrast, green leaves retained Na⁺ in the mesophyll tissue, which suggested that red leaves were better equipped to tolerate salt-specific effects. Therefore, betacyanic plants were more tolerant to applied salinity stress and showed relatively higher growth rates than green morphs.  The findings of this thesis provide a significant contribution to our understanding of the role of betacyanins in plants under salinity stress. My data suggest that the multi-faceted properties of betacyanins (such as their photoprotective function, and their involvement in sequestration of toxic ions) clearly provide a benefit to plants under salinity stress.</p>


2019 ◽  
Vol 20 (3) ◽  
pp. 788 ◽  
Author(s):  
Tingting Jia ◽  
Jian Wang ◽  
Wei Chang ◽  
Xiaoxu Fan ◽  
Xin Sui ◽  
...  

To reveal the mechanism of salinity stress alleviation by arbuscular mycorrhizal fungi (AMF), we investigated the growth parameter, soluble sugar, soluble protein, and protein abundance pattern of E. angustifolia seedlings that were cultured under salinity stress (300 mmol/L NaCl) and inoculated by Rhizophagus irregularis (RI). Furthermore, a label-free quantitative proteomics approach was used to reveal the stress-responsive proteins in the leaves of E. angustifolia. The result indicates that the abundance of 75 proteins in the leaves was significantly influenced when E. angustifolia was inoculated with AMF, which were mainly involved in the metabolism, signal transduction, and reactive oxygen species (ROS) scavenging. Furthermore, we identified chorismate mutase, elongation factor mitochondrial, peptidyl-prolyl cis-trans isomerase, calcium-dependent kinase, glutathione S-transferase, glutathione peroxidase, NADH dehydrogenase, alkaline neutral invertase, peroxidase, and other proteins closely related to the salt tolerance process. The proteomic results indicated that E. angustifolia seedlings inoculated with AMF increased the secondary metabolism level of phenylpropane metabolism, enhanced the signal transduction of Ca2+ and ROS scavenging ability, promoted the biosynthesis of protein, accelerated the protein folding, and inhibited the degradation of protein under salt stress. Moreover, AMF enhanced the synthesis of ATP and provided sufficient energy for plant cell activity. This study implied that symbiosis of halophytes and AMF has potential as an application for the improvement of saline-alkali soils.


2017 ◽  
Vol 28 (1) ◽  
pp. 1-6 ◽  
Author(s):  
MM Rashid ◽  
L Hassan ◽  
SN Begum

An experiment was conducted using a randomized complete block design to explore the performance of rice landraces under salinity stress condition at Plant Breeding Division, Bangladesh Institute of Nuclear Agriculture (BINA), Mymensingh. The experiment was consisted of five replication and three different salt treatments viz., EC-6 dSm-1, EC-8 dSm-1, EC-12 dSm-1 with one control condition. Analysis of variance for yield and yield contributing traits showed significant (p<0.01) variation among the genotypes. The performance of all the landraces with respect to yield and yield contributing traits differed from each other under saline condition. Hogla, TalMugur, Nona Bokhra were identified as tolerant to salinity compared to check Binadhan-8, Binadhan-10 and BRRI dhan47 at 12 dSm-1 salinity treatment. All the traits under this study reduced in the salt stress except days to 50% flowering. In higher salt stress landrace Tal Mugur showed maximum yield followed by Ghunshi and Hogla. The findings of this study can be used for further study and also for developing salt tolerant rice varieties.Progressive Agriculture 28 (1): 1-6, 2017


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Tingting Sun ◽  
Tingting Pei ◽  
Lulu Yang ◽  
Zhijun Zhang ◽  
Mingjun Li ◽  
...  

Abstract Background Soil salinity is a critical threat to global agriculture. In plants, the accumulation of xanthine activates xanthine dehydrogenase (XDH), which catalyses the oxidation/conversion of xanthine to uric acid to remove excess reactive oxygen species (ROS). The nucleobase-ascorbate transporter (NAT) family is also known as the nucleobase-cation symporter (NCS) or AzgA-like family. NAT is known to transport xanthine and uric acid in plants. The expression of MdNAT is influenced by salinity stress in apple. Results In this study, we discovered that exogenous application of xanthine and uric acid enhanced the resistance of apple plants to salinity stress. In addition, MdNAT7 overexpression transgenic apple plants showed enhanced xanthine and uric acid concentrations and improved tolerance to salinity stress compared with nontransgenic plants, while opposite phenotypes were observed for MdNAT7 RNAi plants. These differences were probably due to the enhancement or impairment of ROS scavenging and ion homeostasis abilities. Conclusion Our results demonstrate that xanthine and uric acid have potential uses in salt stress alleviation, and MdNAT7 can be utilized as a candidate gene to engineer resistance to salt stress in plants.


Agronomy ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 127 ◽  
Author(s):  
Muhammad Zeeshan ◽  
Meiqin Lu ◽  
Shafaque Sehar ◽  
Paul Holford ◽  
Feibo Wu

A greenhouse hydroponic experiment was performed using salt-tolerant (cv. Suntop) and -sensitive (Sunmate) wheat cultivars and a salt-tolerant barley cv. CM72 to evaluate how cultivar and species differ in response to salinity stress. Results showed that wheat cv. Suntop performed high tolerance to salinity, being similar tolerance to salinity with CM72, compared with cv. Sunmate. Similar to CM72, Suntop recorded less salinity induced increase in malondialdehyde (MDA) accumulation and less reduction in plant height, net photosynthetic rate (Pn), chlorophyll content, and biomass than in sensitive wheat cv. Sunmate. Significant time-course and cultivar-dependent changes were observed in the activities of antioxidant enzymes such as superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX), and glutathione reductase (GR) in roots and leaves after salinity treatment. Higher activities were found in CM72 and Suntop compared to Sunmate. Furthermore, a clear modification was observed in leaf and root ultrastructure after NaCl treatment with more obvious changes in the sensitive wheat cv. Sunmate, rather than in CM72 and Suntop. Although differences were observed between CM72 and Suntop in the growth and biochemical traits assessed and modified by salt stress, the differences were negligible in comparison with the general response to the salt stress of sensitive wheat cv. Sunmate. In addition, salinity stress induced an increase in the Na+ and Na+/K+ ratio but a reduction in K+ concentrations, most prominently in Sunmate and followed by Suntop and CM72.


ISRN Agronomy ◽  
2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Genhua Niu ◽  
Wenwei Xu ◽  
Denise Rodriguez ◽  
Youping Sun

The growth and physiological responses of four maize inbred lines (CUBA1, B73, B5C2, and BR1) and four sorghum hybrids (SS304, NK7829, Sordan 79, and KS585) to salinity were determined. Fifteen days after sowing, seedlings were irrigated with nutrient solution (control) at electrical conductivity (EC) of 1.5 dS m−1 or saline solution at EC of 8.0 dS m−1 (salt treatment) for 40 days. Dry weight of shoots in maize was reduced by 58%, 65%, 62%, and 69% in CUBA1, B73, B5C2, and BR1, respectively, while that of sorghum was reduced by 51%, 56%, 56%, and 76% in SS304, NK7829, Sordan79, and KS585, respectively, in the salt treatment compared to their respective control. Salinity stress reduced all or some of the gas exchange parameters, leaf transpiration (E), stomatal conductance (gs), and net photosynthetic rate (Pn) in the late part of the experiment for both crops. Salinity treatment greatly increased Na+ uptake in all maize genotypes but did not affect the Na+ uptake in sorghum, regardless of genotype. In maize, CUBA1 was slightly more resistant to salt stress, while BR1 was more sensitive to salt stress. In sorghum, Sordan79 was the most tolerant genotype, and KS585 was the least tolerant genotype.


2013 ◽  
Vol 23 (2) ◽  
pp. 99-110 ◽  
Author(s):  
Rafika Yacoubi ◽  
Claudette Job ◽  
Maya Belghazi ◽  
Wided Chaibi ◽  
Dominique Job

AbstractAlfalfa (Medicago sativa L.) yield is severely compromised by soil salinity, especially at the level of seedling establishment. This question was addressed by proteomics to decipher whether specific changes in protein accumulation correlate with germination performance of alfalfa seeds submitted to a salinity stress as obtained by imbibing seeds in the presence of NaCl. This study used alfalfa seeds submitted to an osmopriming invigoration treatment that proved very efficient in counteracting the negative effect of salinity stress on germination performance. Comparative proteomic analyses disclosed 94 proteins commonly characterizing the response of both the untreated control and osmoprimed seeds to the experimental salinity stress. Remarkably, many of them, representing 84 proteins, showed contrasting accumulation patterns when comparing the untreated control and osmoprimed seeds submitted to the same salt stress. Thus numerous changes observed in the proteome of the untreated control seeds imbibed in the presence of salt, and presumably accounting for the loss in seed vigour associated with salinity stress, can be substantially reversed in osmoprimed seeds undergoing this stress. These data therefore provide a biochemical understanding of the increase in seed vigour generally observed with primed seeds.


Sign in / Sign up

Export Citation Format

Share Document