scholarly journals Temperature Effect on Permeate Water in Batch Electrodialysis Reversal

Author(s):  
Germán Eduardo Dévora-Isiordia ◽  
Alejandra Ayala-Espinoza ◽  
Luis Alberto Lares-Rangel

Currently, a large part of the wells for agricultural use located in the state of Sonora are overexploited, which generates a high degree of saline intrusion and abandonment by nearby communities. In this paper the temperature effect on the final concentration of permeate water was evaluated through voltage and intel concentration variations in a batch electrodialysis reversal process (EDR), in order to identify optimal operating conditions with emphasis on the reduction of energy consumption and cost of desalinated water. Thirty-six samples were prepared: eighteen 2,000 mg/L total dissolved solids (TDS) samples and eighteen 5,000 mg/L TDS samples; brackish well water of 639 mg/L TDS and synthetic salt were mixed to obtain those concentrations. 3 different temperatures (25, 30, 35 °C) and 2 different voltages (10 and 20 V) were tested for each sample. The best salt removal occurred in the 20 V arrays, with 18.34% higher removal for 2,000 mg/L TDS experiments and 25.05% for 5,000 mg/L experiments (average between the 25 to 35 °C tests). Temperature positively affected EDR, especially in the experiments at 10 V voltage, where increasing 10 °C increased its efficiency by 10.83% and 24.69% for 2,000 and 5,000 mg/L TDS, respectively. Energy consumption was lower with increasing temperature (35 °C), as it decreased by 1.405% and 1.613% for 2,000 and 5,000 mg/L TDS concentrations, respectively (average between 10 and 20 V tests), decreasing the cost per m3 of water.

Separations ◽  
2021 ◽  
Vol 8 (12) ◽  
pp. 229
Author(s):  
Germán Eduardo Dévora-Isiordia ◽  
Alejandra Ayala-Espinoza ◽  
Luis Alberto Lares-Rangel ◽  
María Isela Encinas-Guzmán ◽  
Reyna Guadalupe Sánchez-Duarte ◽  
...  

A high percentage of the agricultural wells in the state of Sonora are overexploited, thus generating a significant degree of saline intrusion and abandonment by nearby communities. In this paper, the effect of temperature on the final concentration of diluted water was evaluated with variations in voltage and input concentration in a batch electrodialysis reversal (EDR) process in order to find the optimal operating conditions, with an emphasis on reducing the energy consumption and cost of desalinated water. Thirty-six samples were prepared: eighteen samples of 2000 mg/L total dissolved solids (TDS) and eighteen samples of 5000 mg/L TDS; brackish well water of 639 mg/L TDS and synthetic salt were mixed to obtain these concentrations. Three different temperatures (25, 30, and 35 °C) and two different voltages (10 and 20 V) were tested for each sample after evaluating the limiting current density. The best salt removal occurred in the 20 V sets, with 18.34% higher removal for the 2000 mg/L TDS experiments and 25.05% for the 5000 mg/L experiments (average between the 25 to 35 °C tests). The temperature positively affected the EDR, especially in the experiments at 10 V, where increasing by 10 °C increased the efficiency by 10.83% and 24.69% for 2000 and 5000 mg/L TDS, respectively. The energy consumption was lower with increasing temperature (35 °C), as it decreased by 1.405% and 1.613% for the 2000 and 5000 mg/L TDS concentrations, respectively (average between the 10 and 20 V tests), thus decreasing the cost per m3 of water.


2021 ◽  
Vol 101 (3) ◽  
pp. 48-55
Author(s):  
O. Bereziuk ◽  
V. Savulyak ◽  
V. Kharzhevskyi ◽  
◽  

The article is dedicated to the study of the influence of the surface hardness of the auger on its wear during dehydration of solid waste in the garbage truck. Using the method of regression analysis, the logarithmic dependencies of auger wear depending on the hardness of its surface for different values of the friction path are determined. Graphical dependences of augur wear depending on the hardness of its surface for different values of the friction path are made up, and it confirms sufficient convergence of the obtained dependencies. Carried out additional regression analysis allowed to obtain the dependence of wear of the auger depending on the hardness of its surface and the friction path, which showed that during two weeks of operation and wear of the auger during dehydration of solid waste in the garbage truck increasing the surface hardness of the auger from 2310 MPa to 10050 MPa reducing the rate of growth of energy consumption of solid waste dehydration from 16.7 % to 1.5 %, and, consequently, to reduce the cost of the process of their dehydration in the garbage truck. The graphical dependence of the reduction of energy consumption of dehydration of solid household waste due to the increase in the hardness of the auger surface during its two-week wear is presented. It was established the expediency of further research to determine the rational material of the auger and ways to increase its wear resistance


2020 ◽  
Vol 35 (1) ◽  
pp. 25-33 ◽  
Author(s):  
Magnus Heldin ◽  
Urban Wiklund

AbstractGroundwood pulping is a process that employs large machines, making them difficult to use in research. Lab scale grinders exist, but even though they are smaller, the sizes of the grinding stones or segments make them cumbersome to exchange and tailor. This study presents a method and an apparatus for investigating the detailed mechanisms and the energy requirements behind the fibre separation process. A well-defined grinding tool was used at three different temperatures to demonstrate that the equipment can differentiate levels of energy consumption and defibration rates, confirming the well-known fact that a higher temperature facilitates defibration. It is also shown how the equipment can be used to study the influence of grinding parameters, exemplified by the effect of temperature on the way fibres are separated and the character of the produced fibres. A key feature of the equipment is the use and evaluation of small grinding surfaces, more readily designed, produced, evaluated and studied. This reduces both the cost and time necessary for testing and evaluating. At the same time, a technique to produce well defined grinding surfaces was employed, which is necessary for repeatability and robust testing, not achievable with traditional grinding stones.


Author(s):  
Savita Dubey ◽  
Amita Joshi ◽  
Rashmi Trivedi ◽  
Parmesh Kumar Chaudhari ◽  
Dharm Pal ◽  
...  

Abstract In the current scenario treatment of industrial waste water is big challenge especially waste water that contain high organic load. Hydrogen peroxide assisted electrocoagulation (EC) process provides better result to treat highly polluted wastewater as compared to EC alone. However, hydrogen peroxide is well known as a strong oxidant, which cast a potential threat to human health. To overcome this problem hydrogen peroxide has been used here for treatment of wastewater in small quantity, and that consume during the process. Therefore the harmful effect of hydrogen peroxide in human and aquatic life could be minimized. This work is an attempt to treat biodigester effluent (BDE) using H2O2 assisted EC processes with respect to chemical oxygen demand (COD) and color reductions. To perform this experiment both iron and aluminum electrodes are used as an electrode material in the presence of H2O2. In case of iron electrode the maximum COD and color reduction efficiency of 98.3 and 83.6% was achieved at the cost of 1.5 Wh/dm3 energy consumption while maximum COD and color removal efficiency of 96.8 and 77.1% with 1.7 Wh/dm3 of energy consumption was observed in the aluminum electrode based EC process. A part from this conventional biological process (i.e., activated sludge treatment, ponds, and lagoon etc.) and physiochemical treatment process (i.e., coagulation, adsorption) provided treatment efficiency of 40–80% hence hydrogen peroxide assisted EC process should a better choice to treat distillery effluent. Furthermore, hybrid EC process was also performed with iron used as anode and aluminum as cathode in the presence of H2O2. Iron electrode based peroxi-EC process provided better result at optimum operating conditions; current density of 114 A/m2, initial COD concentration of 12,000 mg/dm3, initial pH of 7.3, H2O2 concentration of 120 mg/dm3, stirring speed of 120 rpm and electrolysis time of 90 min. The cost estimated for operation is 1.56 US $/m3. Finally, sludge analysis and cost optimization are also incorporated in this article.


1998 ◽  
Vol 540 ◽  
Author(s):  
S. X. Wang ◽  
L. M. Wang ◽  
R. C. Ewing

AbstractThree different zeolites (analcime, natrolite, and zeolite-Y) were irradiated with 200 keV and 400 keV electrons. All zeolites amorphized under a relatively low electron fluence. The transformation from the crystalline-to-amorphous state was continuous and homogeneous. The electron fluences for amorphization of the three zeolites at room temperature were: 7.0× 1019 e/cm2 (analcime), 1.8×1020 e/cm2 (natrolite), and 3.4×1020 e/cm2 (zeolite-Y). The different susceptibilities to amorphization are attributed to the different channel sizes in the structures which are the pathways for the release of water molecules and Na+. Natrolite formed bubbles under electron irradiation, even before complete amorphization. Analcime formed bubbles after amorphization. Zeolite-Y did not form bubbles under irradiation. The differences in bubble formation are attributed to the different channel sizes of the three zeolites. The amorphization dose was also measured at different temperatures. An inverse temperature dependence of amorphization dose was observed for all three zeolites: electron dose for amorphization decreased with increasing temperature. This unique temperature effect is attributed to the fact that zeolites are thermally unstable. A semi-empirical model was derived to describe the temperature effect of amorphization in these zeolites.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
María J. Lavorante ◽  
Carla Y. Reynoso ◽  
Juan I. Franco

The challenges to be overtaken with alkaline water electrolysis are the reduction of energy consumption, the maintenance, and the cost as well as the increase of durability, reliability, and safety. Having these challenges in mind, this work focused on the reduction of the electrical resistance of the electrolyte which directly affects energy consumption. According to the definition of electrical resistance of an object, the reduction of the space between electrodes could lower the electrical resistance but, in this process, the formation of bubbles could modify this affirmation. In this work, the performance analyses of nine different spaces between stainless steel 316L electrodes were carried out, although the spaces proposed are not the same as those from the positive electrode (anode) to the separator and from the separator to the negative electrode (cathode). The reason why this is studied is that stoichiometry of the reaction states that two moles of hydrogen and one mole of oxygen can be obtained per every two moles of water. The proposed spaces were 10.65, 9.20, 8.25, 7.25, 6.30, 6.05, 4.35, 4.15, and 3.40 millimetres. From the nine different analysed distances between electrodes, it can be said that the best performance was reached by one of the smallest distances proposed, 4.15 mm. When the same distance between electrodes was compared (the same and different distance between electrodes and separator), the one that had almost twice the distance (negative compartment) presented an increase in current density of approximately 33% with respect to that where both distances (from electrodes to separator) are the same. That indicates that the stichometry of the electrolysis reaction influenced the performance.


2018 ◽  
Vol 230 ◽  
pp. 02006 ◽  
Author(s):  
Inga Emeljanova ◽  
Mykola Derevyanko ◽  
Sergiy Guzenko ◽  
Denys Chayka ◽  
Dmytro Subota

The article considers the possibility to increase the reliability of engineering buildings and facilities due to the use of new small-based equipment both in the operating conditions of technological complexes and in the conditions of technological sets. An example of the use of a technological complex with a universal hose concrete pump for strengthening the supporting columns of a medical centre being built by the wet concrete spraying method is given. The structural scheme of energy consumption by technological sets of small-based equipment is given. The variants of using the technological set of small-sized equipment for concrete work in various ways. One of the universal technological kits of effective small-based equipment is shown. As part of the proposed kit, the base machine can successfully be used universal non-piston hose concrete pump. Dependencies for determining the productivity of a hose concrete pump and the cost of its power for transporting a concrete mixture are proposed.


The choice of cost-effective method of anticorrosive protection of steel structures is an urgent and time consuming task, considering the significant number of protection ways, differing from each other in the complex of technological, physical, chemical and economic characteristics. To reduce the complexity of solving this problem, the author proposes a computational tool that can be considered as a subsystem of computer-aided design and used at the stage of variant and detailed design of steel structures. As a criterion of the effectiveness of the anti-corrosion protection method, the cost of the protective coating during the service life is accepted. The analysis of existing methods of steel protection against corrosion is performed, the possibility of their use for the protection of the most common steel structures is established, as well as the estimated period of effective operation of the coating. The developed computational tool makes it possible to choose the best method of protection of steel structures against corrosion, taking into account the operating conditions of the protected structure and the possibility of using a protective coating.


Sign in / Sign up

Export Citation Format

Share Document