scholarly journals Operations Research and Cost-Effective Spatial Conservation Planning: Data, Models, Tools and Future Directions

Author(s):  
Diogo Alagador ◽  
Jorge O. Cerdeira

Biodiversity conservation questions human practices towards biodiversity and, therefore, largely conflicts with ordinary societal aspirations. Decisions on the location of protected areas, one of the most convincing conservation tools, reflect such a competitive endeavor. Operations Research (OR) brings a set of analytical models and tools capable of resolving the conflicting interests between ecology and economy. Recent technological advances have boosted the size and variety of data available to planners, thus challenging conventional approaches bounded on optimized solutions. New models and methods are requested to use such a massive amount of data in integrative schemes addressing a large variety of concerns. Here, we provide an overview on the past, present and future challenges that characterize spatial conservation models supported by OR. By enlarging the spatial, temporal, taxonomic and societal horizons of biodiversity conservation planners navigate around multiple bio-socioeconomic equilibria and are able to decide on cost-effective strategies to improve biodiversity persistence.

1998 ◽  
Vol 37 (3) ◽  
pp. 241-247 ◽  
Author(s):  
Peter Gerdes ◽  
Sabine Kunst

The bioavailability of phosphorus from different sources has been evaluated in the catchment area of the River Ilmenau (Lower-Saxony, Germany) by using algal assays. The P bioavailability describes the different potential of P from various sources of supporting eutrophication. Effluents from sewage treatment plants were highly bioavailable (72% of TP) whereas rainwater (26%) and erosion effluents (30%) showed a low bioavailability. In order to develop effective strategies to minimize P inputs into the river, source specific P bioavailability indices were determined and combined with a P balance to calculate inputs of vioavailable P (BAP) instead of total P (TP). It could be shown that the relative importance of the different P sources changes when applying BAP. Measures to reduce P inputs into the River Ilmenau will take P bioavailability into consideration and therefore lead to a more cost-effective management.


2020 ◽  
Vol 26 ◽  
Author(s):  
Emir Muzurović ◽  
Zoja Stanković ◽  
Zlata Kovačević ◽  
Benida Šahmanović Škrijelj ◽  
Dimitri P Mikhailidis

: Diabetes mellitus (DM) is a chronic and complex metabolic disorder, and also an important cause of cardiovascular (CV) diseases (CVDs). Subclinical inflammation, observed in patients with type 2 DM (T2DM), cannot be considered the sole or primary cause of T2DM in the absence of classical risk factors, but it represents an important mechanism that serves as a bridge between primary causes of T2DM and its manifestation. Progress has been made in the identification of effective strategies to prevent or delay the onset of T2DM. It is important to identify those at increased risk for DM by using specific biomarkers. Inflammatory markers correlate with insulin resistance (IR) and glycoregulation in patients with DM. Also, several inflammatory markers have been shown to be useful in assessing the risk of developing DM and its complications. However, the intertwining of pathophysiological processes and the not-quite-specificity of inflammatory markers for certain clinical entities limits their practical use. In this review we consider the advantages and disadvantages of various inflammatory biomarkers of DM that have been investigated to date as well as possible future directions. Key features of such biomarkers should be high specificity, non-invasiveness and cost-effectiveness.


Biomolecules ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1072
Author(s):  
Raquel Cid ◽  
Jorge Bolívar

To date, vaccination has become one of the most effective strategies to control and reduce infectious diseases, preventing millions of deaths worldwide. The earliest vaccines were developed as live-attenuated or inactivated pathogens, and, although they still represent the most extended human vaccine types, they also face some issues, such as the potential to revert to a pathogenic form of live-attenuated formulations or the weaker immune response associated with inactivated vaccines. Advances in genetic engineering have enabled improvements in vaccine design and strategies, such as recombinant subunit vaccines, have emerged, expanding the number of diseases that can be prevented. Moreover, antigen display systems such as VLPs or those designed by nanotechnology have improved the efficacy of subunit vaccines. Platforms for the production of recombinant vaccines have also evolved from the first hosts, Escherichia coli and Saccharomyces cerevisiae, to insect or mammalian cells. Traditional bacterial and yeast systems have been improved by engineering and new systems based on plants or insect larvae have emerged as alternative, low-cost platforms. Vaccine development is still time-consuming and costly, and alternative systems that can offer cost-effective and faster processes are demanding to address infectious diseases that still do not have a treatment and to face possible future pandemics.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1051
Author(s):  
Jonattan Gallegos-Catalán ◽  
Zachary Warnken ◽  
Tania F. Bahamondez-Canas ◽  
Daniel Moraga-Espinoza

Orally inhaled drug products (OIDPs) are an important group of medicines traditionally used to treat pulmonary diseases. Over the past decade, this trend has broadened, increasing their use in other conditions such as diabetes, expanding the interest in this administration route. Thus, the bioequivalence of OIDPs is more important than ever, aiming to increase access to affordable, safe and effective medicines, which translates into better public health policies. However, regulatory agencies leading the bioequivalence process are still deciding the best approach for ensuring a proposed inhalable product is bioequivalent. This lack of agreement translates into less cost-effective strategies to determine bioequivalence, discouraging innovation in this field. The Next-Generation Impactor (NGI) is an example of the slow pace at which the inhalation field evolves. The NGI was officially implemented in 2003, being the last equipment innovation for OIDP characterization. Even though it was a breakthrough in the field, it did not solve other deficiencies of the BE process such as dissolution rate analysis on physiologically relevant conditions, being the last attempt of transferring technology into the field. This review aims to reveal the steps required for innovation in the regulations defining the bioequivalence of OIDPs, elucidating the pitfalls of implementing new technologies in the current standards. To do so, we collected the opinion of experts from the literature to explain these trends, showing, for the first time, the stakeholders of the OIDP market. This review analyzes the stakeholders involved in the development, improvement and implementation of methodologies that can help assess bioequivalence between OIDPs. Additionally, it presents a list of methods potentially useful to overcome some of the current limitations of the bioequivalence standard methodologies. Finally, we review one of the most revolutionary approaches, the inhaled Biopharmaceutical Classification System (IBCs), which can help establish priorities and order in both the innovation process and in regulations for OIDPs.


2021 ◽  
Vol 43 (1) ◽  
pp. 4-7
Author(s):  
Linda J. Johnston ◽  
Norma Gonzalez-Rojano ◽  
Kevin J. Wilkinson ◽  
Baoshan Xing

Abstract Nanotechnology has developed rapidly in the last two decades with significant effort focused on the development of nano-enabled materials with new or improved properties that offer solutions for current world challenges. The commercialization of products containing engineered nanomaterials (ENM) has progressed much more rapidly than the development of practical approaches to ensure their safe and sustainable use. The lack of adequate detection and characterization techniques and reproducible and validated methods for toxicological studies have been identified as major limitations. The rapid development of ENM of increasing complexity and diversity and concerns over the adequacy of existing regulations also contribute to safety concerns with these materials. The full potential of nanotechnology can only be realized when feasible, cost-effective strategies to ensure a safe-by-design approach, effective risk assessment approaches and appropriate regulatory guidelines are in place.


2019 ◽  
Vol 36 (2) ◽  
pp. 60-69
Author(s):  
Paul H Cleverley ◽  
Simon Burnett

Enterprise search is changing. The explosion of information within organizations, technological advances and availability of free OpenSource machine learning libraries offer many possibilities. Eighteen informants from practice, academia, search technology vendors and large organizations (Oil and Gas, Governments, Pharmaceuticals, Aerospace and Retail) were interviewed to assess challenges and future directions. The findings confirmed the existence of the ‘Google Habitus’, technology propaganda and a need to transcend disciplines for a Systems thinking approach toward enterprise search. This encompasses information management, user search literacy, governance, learning feedback loops as well as technology. A novel four-level model for enterprise search use cases is presented, covering search as a utility, search as an answer machine, search task apps and a discovery engine. This could be used to reframe enterprise search perceptions, expanding possibilities and improving business outcomes.


2017 ◽  
Vol 44 (1) ◽  
pp. 11-17 ◽  
Author(s):  
E. Charles Osterberg ◽  
Gregory Murphy ◽  
Catherine R. Harris ◽  
Benjamin N. Breyer

Neurosurgery ◽  
2008 ◽  
Vol 62 (suppl_2) ◽  
pp. SHC633-SHC642 ◽  
Author(s):  
James M. Drake

Abstract THE SURGICAL MANAGEMENT of hydrocephalus has undergone incredible changes over the past generation of neurosurgeons, including dramatic improvements in imaging, especially computed tomographic scanning and magnetic resonance imaging, and remarkably innovative advances in cerebrospinal fluid valve technology, complex computer models, and endoscopic equipment and techniques. In terms of overall patient outcomes, however, one could conclude that things are a little better, but “not much.” This frustrating yet fascinating dichotomy between technological advancements and clinical outcomes makes hydrocephalus, first described by the ancients, as one of the most understated and complex disorders that neurosurgeons treat. The challenge to the next generation of neurosurgeons is to solve this vexing problem through better understanding of the basic science, improved computer models, additional technological advances, and, most importantly, a broad-based, concerted multidisciplinary attack on this disorder. This review focuses on the evolution of surgery for hydrocephalus over the last 30 years, the current state of the art of hydrocephalus treatment, and what appear to be the most promising future directions.


Author(s):  
Duc Loc Sai ◽  
Jieun Lee ◽  
Duc Long Nguyen ◽  
Young-Pil Kim

AbstractPhotodynamic therapy (PDT) has been considered a noninvasive and cost-effective modality for tumor treatment. However, the complexity of tumor microenvironments poses challenges to the implementation of traditional PDT. Here, we review recent advances in PDT to resolve the current problems. Major breakthroughs in PDTs are enabling significant progress in molecular medicine and are interconnected with innovative strategies based on smart bio/nanomaterials or therapeutic insights. We focus on newly developed PDT strategies designed by tailoring photosensitive reactive oxygen species generation, which include the use of proteinaceous photosensitizers, self-illumination, or oxygen-independent approaches. While these updated PDT platforms are expected to enable major advances in cancer treatment, addressing future challenges related to biosafety and target specificity is discussed throughout as a necessary goal to expand the usefulness of PDT.


2014 ◽  
Vol 2 ◽  
pp. 319-322
Author(s):  
Vitaliy Moskalenko ◽  
Iryna Nizhenkovskaya ◽  
Elena Welchinska

Countries worldwide are facing similar healthcare problems.  Medicine develops new methods for treatment, and pharmaceutical companies invent more efficient products.  These technological advances are, however, expensive, and put a double-strain on public healthcare spending: the cost of sophisticated treatment keeps growing, and improved healthcare allows patients to live longer, thus requiring more treatment.  Budgetary constraints, however, require government to restrict expenditure.  These challenges have to be answered in the context of existing public healthcare systems, which, are well established and complex.  Healthcare reforms will necessarily reflect these characteristics, as well as the relative political weight of the partners.  Such reforms will most likely affect all partners involved in the provision and healthcare management, including social security institutions (state agencies, sickness funds, etc.), doctors, and other health professionals—pharmacists.  Currently one of most important strategic tasks of modernization of the system of higher education in Ukraine is the high quality education provided to pharmacists in order to satisfy the worldwide needs.Whatever specific reform will be adopted, the main goals are to make the system more efficient and, thus, more cost effective; and, because the first aspect will not sufficiently decrease the expenditure, it is necessary to limit the scope of public health care while maintaining a balance of benefits.  


Sign in / Sign up

Export Citation Format

Share Document