scholarly journals Realistic Simulation of Synthetic Images on Computer Monitors Based on the Color Appearance Model CIECAM02

Author(s):  
Vladimir Budak ◽  
Ekaterina Emelianova

The theory of global illumination and computer programs based on it allows calculating the light field accurately in an arbitrary three-dimensional lighting scene. However, the output of the visualization of the light field spatial-angular distribution to the display screen in the form of an image is inevitably associated with scaling the luminance and color of the image pixels to the computer display dynamic range. To date, a color appearance model was created in colorimetry. This model allows recalculating the image pixels' color for viewing conditions other than the original ones preserving the image's visual perception. This model is approved by the CIE (International Commission on Illumination) as a standard model under the name CIECAM02. In this paper, the CIECAM02 algorithm model is implemented, and a study of designing a lighting system for lighting a theater stage to create an atmosphere of sunset is carried out. Modeling the lighting system is performed in the DIALux evo program, which is the de facto standard of design in lighting engineering. The correspondence of the visualization of the stage lighting to the feeling of sunset is analyzed based on expert assessments. The research allows us to recommend the inclusion of the CIECAM02 model in the algorithms for visualizing the image of three-dimensional lighting scenes.

2021 ◽  
Vol 2021 (29) ◽  
pp. 184-187
Author(s):  
Shi Xinye ◽  
Zhu Yuechen ◽  
Ming Ronnier Luo

An experiment was carried out to investigate the change of color appearance for 13 surface stimuli viewed under a wide range of illuminance levels (15-32000 lux) using asymmetrical matching method. Addition to the above, in the visual field, observers viewed colours in a dark (10 lux) and a bright (200000 lux) illuminance level at the same time to simulate HDR viewing condition. The results were used to understand the relationship between the color changes under HDR conditions, to generate a corresponding color dataset and to verify color appearance model, such as CIECAM16.


2020 ◽  
pp. 108-115 ◽  
Author(s):  
Vladimir P. Budak ◽  
Anton V. Grimaylo

The article describes the role of polarisation in calculation of multiple reflections. A mathematical model of multiple reflections based on the Stokes vector for beam description and Mueller matrices for description of surface properties is presented. On the basis of this model, the global illumination equation is generalised for the polarisation case and is resolved into volume integration. This allows us to obtain an expression for the Monte Carlo method local estimates and to use them for evaluation of light distribution in the scene with consideration of polarisation. The obtained mathematical model was implemented in the software environment using the example of a scene with its surfaces having both diffuse and regular components of reflection. The results presented in the article show that the calculation difference may reach 30 % when polarisation is taken into consideration as compared to standard modelling.


2019 ◽  
Vol 2019 (1) ◽  
pp. 320-325 ◽  
Author(s):  
Wenyu Bao ◽  
Minchen Wei

Great efforts have been made to develop color appearance models to predict color appearance of stimuli under various viewing conditions. CIECAM02, the most widely used color appearance model, and many other color appearance models were all developed based on corresponding color datasets, including LUTCHI data. Though the effect of adapting light level on color appearance, which is known as "Hunt Effect", is well known, most of the corresponding color datasets were collected within a limited range of light levels (i.e., below 700 cd/m2), which was much lower than that under daylight. A recent study investigating color preference of an artwork under various light levels from 20 to 15000 lx suggested that the existing color appearance models may not accurately characterize the color appearance of stimuli under extremely high light levels, based on the assumption that the same preference judgements were due to the same color appearance. This article reports a psychophysical study, which was designed to directly collect corresponding colors under two light levels— 100 and 3000 cd/m2 (i.e., ≈ 314 and 9420 lx). Human observers completed haploscopic color matching for four color stimuli (i.e., red, green, blue, and yellow) under the two light levels at 2700 or 6500 K. Though the Hunt Effect was supported by the results, CIECAM02 was found to have large errors under the extremely high light levels, especially when the CCT was low.


Author(s):  
Ying Yuan ◽  
Xiaorui Wang ◽  
Yang Yang ◽  
Hang Yuan ◽  
Chao Zhang ◽  
...  

Abstract The full-chain system performance characterization is very important for the optimization design of an integral imaging three-dimensional (3D) display system. In this paper, the acquisition and display processes of 3D scene will be treated as a complete light field information transmission process. The full-chain performance characterization model of an integral imaging 3D display system is established, which uses the 3D voxel, the image depth, and the field of view of the reconstructed images as the 3D display quality evaluation indicators. Unlike most of the previous research results using the ideal integral imaging model, the proposed full-chain performance characterization model considering the diffraction effect and optical aberration of the microlens array, the sampling effect of the detector, 3D image data scaling, and the human visual system, can accurately describe the actual 3D light field transmission and convergence characteristics. The relationships between key parameters of an integral imaging 3D display system and the 3D display quality evaluation indicators are analyzed and discussed by the simulation experiment. The results will be helpful for the optimization design of a high-quality integral imaging 3D display system.


Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1920
Author(s):  
Chang Wang ◽  
Zeqing Yu ◽  
Qiangbo Zhang ◽  
Yan Sun ◽  
Chenning Tao ◽  
...  

Near-eye display (NED) systems for virtual reality (VR) and augmented reality (AR) have been rapidly developing; however, the widespread use of VR/AR devices is hindered by the bulky refractive and diffractive elements in the complicated optical system as well as the visual discomfort caused by excessive binocular parallax and accommodation-convergence conflict. To address these problems, an NED system combining a 5 mm diameter metalens eyepiece and a three-dimensional (3D), computer-generated holography (CGH) based on Fresnel diffraction is proposed in this paper. Metalenses have been extensively studied for their extraordinary capabilities at wavefront shaping at a subwavelength scale, their ultrathin compactness, and their significant advantages over conventional lenses. Thus, the introduction of the metalens eyepiece is likely to reduce the issue of bulkiness in NED systems. Furthermore, CGH has typically been regarded as the optimum solution for 3D displays to overcome limitations of binocular systems, since it can restore the whole light field of the target 3D scene. Experiments are carried out for this design, where a 5 mm diameter metalens eyepiece composed of silicon nitride anisotropic nanofins is fabricated with diffraction efficiency and field of view for a 532 nm incidence of 15.7% and 31°, respectively. Furthermore, a novel partitioned Fresnel diffraction and resample method is applied to simulate the wave propagations needed to produce the hologram, with the metalens capable of transforming the reconstructed 3D image into a virtual image for the NED. Our work combining metalens and CGH may pave the way for portable optical display devices in the future.


Author(s):  
Luciano César PC Leonel ◽  
Lucas P. Carlstrom ◽  
Christopher S. Graffeo ◽  
Avital Perry ◽  
Carlos Diogenes Pinheiro-Neto ◽  
...  

Abstract Objective This study was aimed to provide a key update to the seminal works of Prof. Albert L. Rhoton Jr., MD, with particular attention to previously unpublished insights from the oral tradition of his fellows, recent technological advances including endoscopy, and high-dynamic range (HDR) photodocumentation, and, local improvements in technique, we have developed to optimize efficient neuroanatomic study. Methods Two formaldehyde-fixed cadaveric heads were injected with colored latex to demonstrate step-by-step specimen preparation for microscopic or endoscopic dissection. One formaldehyde-fixed brain was utilized to demonstrate optimal three-dimensional (3D) photodocumentation techniques. Results Key steps of specimen preparation include vessel cannulation and securing, serial tap water flushing, specimen drainage, vessel injection with optimized and color-augmented latex material, and storage in 70% ethanol. Optimizations for photodocumentation included the incorporation of dry black drop cloth and covering materials, an imaging-oriented approach to specimen positioning and illumination, and single-camera stereoscopic capture techniques, emphasizing the three-exposure-times-per-eye approach to generating images for HDR postprocessing. Recommended tools, materials, and technical nuances were emphasized throughout. Relative advantages and limitations of major 3D projection systems were comparatively assessed, with sensitivity to audience size and purpose specific recommendations. Conclusion We describe the first consolidated step-by-step approach to advanced neuroanatomy, including specimen preparation, dissection, and 3D photodocumentation, supplemented by previously unpublished insights from the Rhoton fellowship experience and lessons learned in our laboratories in the past years such that Prof. Rhoton's model can be realized, reproduced, and expanded upon in surgical neuroanatomy laboratories worldwide.


2016 ◽  
Vol 72 (2) ◽  
pp. 236-242 ◽  
Author(s):  
E. van Genderen ◽  
M. T. B. Clabbers ◽  
P. P. Das ◽  
A. Stewart ◽  
I. Nederlof ◽  
...  

Until recently, structure determination by transmission electron microscopy of beam-sensitive three-dimensional nanocrystals required electron diffraction tomography data collection at liquid-nitrogen temperature, in order to reduce radiation damage. Here it is shown that the novel Timepix detector combines a high dynamic range with a very high signal-to-noise ratio and single-electron sensitivity, enablingab initiophasing of beam-sensitive organic compounds. Low-dose electron diffraction data (∼0.013 e− Å−2 s−1) were collected at room temperature with the rotation method. It was ascertained that the data were of sufficient quality for structure solution using direct methods using software developed for X-ray crystallography (XDS,SHELX) and for electron crystallography (ADT3D/PETS,SIR2014).


Sign in / Sign up

Export Citation Format

Share Document