scholarly journals Synthesis of the digital regulator of the main contour of the three-circuit system of the linear electric drive of the working body of the mechanism of onboard aviation equipment

Author(s):  
Y. O. Denisov ◽  
O. I. Denisov ◽  
O. O. Bursala

Goal The purpose of the article is to further develop analytical methods for calculating and synthesizing power electronics systems with deep pulse width modulation (PWM). A three-circuit linear electric drive system for positioning the working body of the mechanism of onboard aircraft equipment, in which the linear electric motor is controlled from a pulse width converter (PWC), is considered. The power converter is included in the current loop. It has a noticeable effect on the level of current ripple, travel speed and positioning accuracy of the operating mechanism of a linear electric drive. Methodology. To analyze the processes in the current loop, a discrete transfer function of a pulse-width converter for PWM in the final zone and «in the large» is obtained on the basis of the statistical linearization of the modulation characteristics of the multi-loop PWM model. The modulation characteristic of each circuit of the model is obtained as a result of the Fourier series expansion in Walsh functions of the output voltage of the PWM during the PWM process. Statistical linearization of modulation characteristics is performed based on Hermite polynomials. Results. During the analysis, discrete transfer functions of closed current loops, velocity and open loop position were obtained, for which a digital controller was synthesized in the form of a recursive filter. Originality. The parameters of the regulator links are found, which make it possible to complete the transient process in four PWC switching periods with an overshoot of no more than 6 %. The analysis of the speed-optimized positioning process of a linear electric drive based on the LED AT 605TU motor is carried out. Practical significance. The purpose of the analysis was to establish the relationship between the switching period of the PWM and the value of the uncompensated constant, at which the pulsations of the positioning process are minimal while ensuring the minimum overshoot and maximum speed. It was found that the specified requirements are satisfied by the ratio between the switching period, PWC and uncompensated constant in the range of one or two.

Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3263 ◽  
Author(s):  
Gul Tchoketch Kebir ◽  
Cherif Larbes ◽  
Adrian Ilinca ◽  
Thameur Obeidi ◽  
Selma Tchoketch Kebir

The Maximum Power Point Tracking (MPPT) strategy is commonly used to maximize the produced power from photovoltaic generators. In this paper, we proposed a control method with a fuzzy logic approach that offers significantly high performance to get a maximum power output tracking, which entails a maximum speed of power achievement, a good stability, and a high robustness. We use a fuzzy controller, which is based on a special choice of a combination of inputs and outputs. The choice of inputs and outputs, as well as fuzzy rules, was based on the principles of mathematical analysis of the derived functions (slope) for the purpose of finding the optimum. Also, we have proved that we can achieve the best results and answers from the system photovoltaic (PV) with the simplest fuzzy model possible by using only 3 sets of linguistic variables to decompose the membership functions of the inputs and outputs of the fuzzy controller. We compare this powerful controller with conventional perturb and observe (P&O) controllers. Then, we make use of a Matlab-Simulink® model to simulate the behavior of the PV generator and power converter, voltage, and current, using both the P&O and our fuzzy logic-based controller. Relative performances are analyzed and compared under different scenarios for fixed or varied climatic conditions.


2008 ◽  
Vol 2008 ◽  
pp. 1-20 ◽  
Author(s):  
Fabiola Angulo ◽  
Enric Fossas ◽  
Tere M. Seara ◽  
Gerard Olivar

We show the main results obtained when applying the average theory to Zero Average Dynamic control technique in a buck power converter with pulse-width modulation (PWM). In particular, we have obtained the bound values for output error and sliding surface. The PWM with centered and lateral pulse configurations were analyzed. The analytical results have confirmed the numerical and experimental results already obtained in previous publications. Moreover, through an important lemma, we have generalized the theory for any stable second-order system with relative degree 2, using properties related to transformations and stability of linear systems.


2018 ◽  
Vol 17 (3) ◽  
pp. 89-102
Author(s):  
Md. Saiful Islam ◽  
Md. Rifat-Ul-Karim Shovon ◽  
Abdul Goffar Khan

This paper presents a comparative study of the application of Thyristor versus IGBT in AC-DC controlled power converter. Both simulation and practical experiment have been carried out to test the relationship between the average output voltage (Vdc) with firing angle (α, for Thyristor) and triggering pulse width (, for IGBT). Also the total harmonic distortion (THD) has been observed in both the cases. It is observed that IGBT based power converter introduces more harmonics in the system, in spite of more symmetrical output voltage wave shape.


Author(s):  
M. Gaiceanu ◽  
S. Epure ◽  
C. R. Dache ◽  
S. Ciuta

Abstract The research purpose of the authors is reducing the energy consumption of the main worldwide consumer - the electric motors- by useful utilization of the input energy through the Regenerative Electric Drive System having also the power quality features. The prototype of the electric elevator consists mainly of two trolley: one serve for the active load, and the other as counterweight, gearbox, power converter, induction machine and chain transmission. The elevator is driven by using 4kW three-phase induction machine through AC-AC power converter and has the capacity of 450 kg. The numerical simulation results and the experimental platform are shown.


2021 ◽  
Vol 1 (2) ◽  
pp. 1-5
Author(s):  
Mengzi Li ◽  
◽  
Shishan Wang ◽  
Jian Guo

The miniaturization and integration of Switching Mode Power Supply (SMPS) is increasing, making it more complicated to analyze and predict its far-field radiated emission, and, consequently, studying the suppression method of far-field radiated emission of SMPS is of practical significance and engineering value. In this paper, a high-frequency SMPS is selected as the research object, whose far-field radiated emission is measured under the condition of three typical suppression methods. The experimental results verified the effectiveness of common-mode inductor and are of reference value for EMC design of power converter. Keywords: SMPS; EMC; Far-field Radiated Emission;


Author(s):  
Andrew Y. J. Szeto ◽  
John Lyman ◽  
Ronald E. Prior

Psychometric functions of pulse rate (PR) and pulse width (PW) from electrocutaneous stimuli were determined using the method of comparative judgments. The study revealed that changes in PR were more easily detected than changes in PW, as measured by the percent of just noticeable difference (jnd). The PR jnd data from test subjects indicated that maximum frequency discrimination occurred near 20 pulses per second. Using the PR and PW psychometric curves, compensatory transfer functions can be determined which will improve the efficacy of sensory communication systems based on electrocutaneous stimulation.


2013 ◽  
Vol 3 (4) ◽  
Author(s):  
Subhash Chander ◽  
Pramod Agarwal ◽  
Indra Gupta

AbstractPulse width modulation (PWM) has been widely used in power converter control. This paper presents a review of architectures of the Digital Pulse Width Modulators (DPWM) targeting digital control of switching DC-DC converters. An attempt is made to review the reported architectures with emphasis on the ASIC and FPGA implementations in single phase and single-output DC-DC converters. Recent architectures using FPGA’s advanced resources for achieving the resolution higher than classical methods have also been discussed. The merits and demerits of different architectures, and their relative comparative performance, are also presented. The Authors intention is to uncover the groundwork and the related references through this review for the benefit of readers and researchers targeting different DPWM architectures for the DC-DC converters.


Sign in / Sign up

Export Citation Format

Share Document