scholarly journals Brain Tumor Diagnosis Support System: A Decision Fusion Framework

Author(s):  
Kalifa Shantta ◽  
Otman Basir

The early and accurate detection of brain tumors is important in providing effective and efficient therapy and thus can result in increased survival rates.  Current image-based tumor detection and diagnosis methods depend heavily on the interpretation of the neuro specialists and/or radiologists.  Therefore, it is quite possible for the interpretation process to be time-consuming, and prone to human error and subjectivity. Automatic detection and classification of brain tumors have the potential to achieve efficiency and higher degree of predictable accuracy. However, it is well established that the accuracy performance of automatic detection and classification techniques varies from technique to technique, and tends to be image modality dependent. Thus, it is prudent to explore the variability in the performance of these techniques as a means to achieve consistent high accuracy performance. This paper presents a framework for fusing multiple tumor classifiers. The fusion process is based on the Dempster Shafer evidence fusion theory. Several tumor classifiers are employed. Experimental results will be presented to validate the efficiency of the proposed framework. It is concluded that fusing the classification decisions made by the various classifiers it is conceivable that efficient and consistent high accuracy classification performance can be attained.

Author(s):  
Kalifa Shantta ◽  
Otman Basir

<p class="Abstract">Even with the enormous progress in medical technology, brain tumor detection is still an extremely tedious and complex task for the physicians. The early and accurate detection of brain tumors enables effective and efficient therapy and thus can result in increased survival rates. Automatic detection and classification of brain tumors have the potential to achieve efficiency and a higher degree of predictable accuracy. However, it is well established that the accuracy performance of automatic detection and classification techniques varies from technique to technique, and tends to be image modality dependent. This paper reviews the state-of-the-art detection techniques and highlights their pros and cons.</p>


2012 ◽  
Vol 58 (4) ◽  
pp. 425-431 ◽  
Author(s):  
D. Selvathi ◽  
N. Emimal ◽  
Henry Selvaraj

Abstract The medical imaging field has grown significantly in recent years and demands high accuracy since it deals with human life. The idea is to reduce human error as much as possible by assisting physicians and radiologists with some automatic techniques. The use of artificial intelligent techniques has shown great potential in this field. Hence, in this paper the neuro fuzzy classifier is applied for the automated characterization of atheromatous plaque to identify the fibrotic, lipidic and calcified tissues in Intravascular Ultrasound images (IVUS) which is designed using sixteen inputs, corresponds to sixteen pixels of instantaneous scanning matrix, one output that tells whether the pixel under consideration is Fibrotic, Lipidic, Calcified or Normal pixel. The classification performance was evaluated in terms of sensitivity, specificity and accuracy and the results confirmed that the proposed system has potential in detecting the respective plaque with the average accuracy of 98.9%.


Author(s):  
Aida Masoumdoost ◽  
Reza Saadatyar ◽  
Hamid Reza Kobravi

Abstract Myoelectric signals are regarded as the control signal for prosthetic limbs. But, the main research challenge is reliable and repeatable movement detection using electromyography. In this study, the analysis of the muscle synergy pattern has been considered as a key idea to cope with this main challenge. The main objective of this research was to provide an analytical tool to recognize six wrist movements through electromyography (EMG) based on analysis of the muscle synergy patterns. In order to design such a system‚ the synergy patterns of the wrist muscles have been extracted and utilized to identify wrist movements. Also, different decision fusion algorithms were used to increase the reliability of the synergy pattern classification. The classification performance was evaluated while no data subject was enrolled. In terms of the achieved performance, using a multi-layer perceptron (MLP) neural network as the fusion algorithm turned out to be the best combination. The classification average accuracy, obtained in an offline manner, was about 99.78 ± 0.45%. While the classification average cross-validation accuracy, obtained in an offline manner, using Bayesian fusion, and Bayesian fuzzy clustering (BFC) fusion algorithm were 99.33 ± 0.80% and 96.43 ± 1.08%, respectively.


2020 ◽  
Vol 22 (1) ◽  
pp. 190
Author(s):  
Fulvio Borella ◽  
Mario Preti ◽  
Luca Bertero ◽  
Giammarco Collemi ◽  
Isabella Castellano ◽  
...  

Vulvar cancer (VC) is a rare neoplasm, usually arising in postmenopausal women, although human papilloma virus (HPV)-associated VC usually develop in younger women. Incidences of VCs are rising in many countries. Surgery is the cornerstone of early-stage VC management, whereas therapies for advanced VC are multimodal and not standardized, combining chemotherapy and radiotherapy to avoid exenterative surgery. Randomized controlled trials (RCTs) are scarce due to the rarity of the disease and prognosis has not improved. Hence, new therapies are needed to improve the outcomes of these patients. In recent years, improved knowledge regarding the crosstalk between neoplastic and tumor cells has allowed researchers to develop a novel therapeutic approach exploiting these molecular interactions. Both the innate and adaptive immune systems play a key role in anti-tumor immunesurveillance. Immune checkpoint inhibitors (ICIs) have demonstrated efficacy in multiple tumor types, improving survival rates and disease outcomes. In some gynecologic cancers (e.g., cervical cancer), many studies are showing promising results and a growing interest is emerging about the potential use of ICIs in VC. The aim of this manuscript is to summarize the latest developments in the field of VC immunoncology, to present the role of state-of-the-art ICIs in VC management and to discuss new potential immunotherapeutic approaches.


2020 ◽  
Author(s):  
Harith Al-Sahaf ◽  
A Song ◽  
K Neshatian ◽  
Mengjie Zhang

Image classification is a complex but important task especially in the areas of machine vision and image analysis such as remote sensing and face recognition. One of the challenges in image classification is finding an optimal set of features for a particular task because the choice of features has direct impact on the classification performance. However the goodness of a feature is highly problem dependent and often domain knowledge is required. To address these issues we introduce a Genetic Programming (GP) based image classification method, Two-Tier GP, which directly operates on raw pixels rather than features. The first tier in a classifier is for automatically defining features based on raw image input, while the second tier makes decision. Compared to conventional feature based image classification methods, Two-Tier GP achieved better accuracies on a range of different tasks. Furthermore by using the features defined by the first tier of these Two-Tier GP classifiers, conventional classification methods obtained higher accuracies than classifying on manually designed features. Analysis on evolved Two-Tier image classifiers shows that there are genuine features captured in the programs and the mechanism of achieving high accuracy can be revealed. The Two-Tier GP method has clear advantages in image classification, such as high accuracy, good interpretability and the removal of explicit feature extraction process. © 2012 IEEE.


2019 ◽  
Author(s):  
Enoch Uche ◽  
Nkechi Judith Uche ◽  
Obinna V Ajuzieogu ◽  
Dubem Amuta ◽  
ephraim Onyia ◽  
...  

Abstract Background: Pediatric brain tumors (PBT’s) from previous studies are associated with poor outcomes in our subregion. Methods. An 8 -year single center prospective study. All cases investigated with neuroimaging and treated were enrolled. Data was analyzed with SPSS (Inc) Chicago IL, USA version 23. Chi Square test, One-way Anova and confidence limits were used to evaluate associations using the 95% level of significance. Patients were followed up for a range of 1 to 7.5 years with a mean of 4.9 ±1.3years. Ethical approval was obtained for our study. Results: 95 patients were enrolled, 84 satisfied the study criteria. There were 45 males and 39 females, M: F=1.1. The mean age was 9.9±2.7 years 95%CI with a range of 9 months to 16 years. The most common symptom was headache for supratentorial lesions (73%) and gait disturbance (80.2%) for infratentorial lesions. More tumors were supratentorial in location (45(54.2%), while 33(37.1%) were infratentorial. Craniopharyngiomas (n=19), medulloblastomas(n=17) and astrocytomas (n=11) were the most common tumors. Hemoglobin genotype(AA and AS) had some influence on tumor phenotype, Odds ratio 8.9 and 3.3 for medulloblastoma and craniopharyngioma. 69 cases were microsurgically resected while 14 patients were treated with radiotherapy alone. The 30-day mortality for operated cases is 7.9±1.3%. Overall 1-year and 5-year survival was 67.9% and 53.6 % respectively. Survival rates varied among treatment groups (X2=8.9, P=0.017). Conclusion: Survival profile in this series suggests some improvement in comparison to previous studies from our region.


2020 ◽  
Author(s):  
Zezhong Ye ◽  
Komal Sriniv ◽  
Ashely Meyer ◽  
Peng Sun ◽  
Joshua Lin ◽  
...  

Abstract Background: High-grade pediatric brain tumors exhibit the highest cancer mortality rates in children. While conventional MRI has been widely adopted for examining pediatric high-grade brain tumors clinically, accurate neuroimaging detection and differentiation of tumor histopathology for improved diagnosis, surgical planning, and treatment evaluation, remains an unmet need in their clinical management. Methods: We employed a novel Diffusion Histology Imaging (DHI) approach employing diffusion basis spectrum imaging (DBSI) derived metrics as the input classifiers for deep neural network analysis. DHI aims to detect, differentiate, and quantify heterogeneous areas in pediatric high-grade brain tumors, which include normal white matter (WM), densely cellular tumor, less densely cellular tumor, infiltrating edge, necrosis, and hemorrhage. Distinct diffusion metric combination would thus indicate the unique distributions of each distinct tumor histology features. Results: DHI, by incorporating DBSI metrics and the deep neural network algorithm, classified pediatric tumor histology with an overall accuracy of 83.3%. Receiver operating analysis (ROC) analysis suggested DHI’s great capability in distinguishing individual tumor histology with AUC values (95%CI) of 0.983 (0.985 - 0.989), 0.961 (0.957 - 0.964), 0.993 (0.992 - 0.994), 0.953 (0.947 - 0.958), 0.974 (0.970 - 0.978) and 0.980 (0.977 - 0.983) for normal WM, densely cellular tumor, less densely cellular tumor, infiltrating edge, necrosis and hemorrhage, respectively. Conclusions: Our results suggest that DBSI-DNN, or DHI, accurately characterized and classified multiple tumor histologic features in pediatric high-grade brain tumors. If these results could be further validated in patients, the novel DHI might emerge as a favorable alternative to the current neuroimaging techniques to better guide biopsy and resection as well as monitor therapeutic response in patients with high-grade brain tumors.


Author(s):  
Bisheng Yang ◽  
Yuan Liu ◽  
Fuxun Liang ◽  
Zhen Dong

High Accuracy Driving Maps (HADMs) are the core component of Intelligent Drive Assistant Systems (IDAS), which can effectively reduce the traffic accidents due to human error and provide more comfortable driving experiences. Vehicle-based mobile laser scanning (MLS) systems provide an efficient solution to rapidly capture three-dimensional (3D) point clouds of road environments with high flexibility and precision. This paper proposes a novel method to extract road features (e.g., road surfaces, road boundaries, road markings, buildings, guardrails, street lamps, traffic signs, roadside-trees, power lines, vehicles and so on) for HADMs in highway environment. Quantitative evaluations show that the proposed algorithm attains an average precision and recall in terms of 90.6% and 91.2% in extracting road features. Results demonstrate the efficiencies and feasibilities of the proposed method for extraction of road features for HADMs.


2018 ◽  
Vol 5 (2) ◽  
pp. 175-185
Author(s):  
Akhmad Syukron ◽  
Agus Subekti

                                         AbstrakPenilaian kredit telah menjadi salah satu cara utama bagi sebuah lembaga keuangan untuk menilai resiko kredit,  meningkatkan arus kas, mengurangi kemungkinan resiko dan membuat keputusan manajerial. Salah satu permasalahan yang dihadapai pada penilaian kredit yaitu adanya ketidakseimbangan distribusi dataset. Metode untuk mengatasi ketidakseimbangan kelas yaitu dengan metode resampling, seperti menggunakan Oversampling, undersampling dan hibrida yaitu dengan menggabungkan kedua pendekatan sampling. Metode yang diusulkan pada penelitian ini adalah penerapan metode Random Over-Under Sampling Random Forest untuk meningkatkan kinerja akurasi klasifikasi penilaian kredit pada dataset German Credit.  Hasil pengujian menunjukan bahwa klasifikasi tanpa melalui proses resampling menghasilkan kinerja akurasi rata-rata 70 % pada semua classifier. Metode Random Forest memiliki nilai akurasi yang lebih baik dibandingkan dengan beberapa metode lainnya dengan nilai akurasi sebesar 0,76 atau 76%. Sedangkan klasifikasi dengan penerapan metode Random Over-under sampling Random Forest  dapat meningkatkan kinerja akurasi sebesar 14,1% dengan nilai akurasi sebesar 0,901 atau 90,1 %. Hasil penelitian menunjukan bahwa penerapan  resampling dengan metode Random Over-Under Sampling pada algoritma Random Forest dapat meningkatkan kinerja akurasi secara efektif pada klasifikasi  tidak seimbang untuk penilaian kredit pada dataset German Credit. Kata kunci: Penilaian Kredit, Random Forest, Klasifikasi, ketidakseimbangan kelas, Random Over-Under Sampling                                                  AbstractCredit scoring has become one of the main ways for a financial institution to assess credit risk, improve cash flow, reduce the possibility of risk and make managerial decisions. One of the problems faced by credit scoring is the imbalance in the distribution of datasets. The method to overcome class imbalances is the resampling method, such as using Oversampling, undersampling and hybrids by combining both sampling approaches. The method proposed in this study is the application of the Random Over-Under Sampling Random Forest method to improve the accuracy of the credit scoring classification performance on German Credit dataset. The test results show that the classification without going through the resampling process results in an average accuracy performance of 70% for all classifiers. The Random Forest method has a better accuracy value compared to some other methods with an accuracy value of 0.76 or 76%. While classification by applying the Random Over-under sampling + Random Forest method can improve accuracy performance 14.1% with an accuracy value of 0.901 or 90.1%. The results showed that the application of resampling using Random Over-Under Sampling method in the Random Forest algorithm can improve accuracy performance effectively on an unbalanced classification for credit scoring on German Credit dataset. Keywords: Imbalance Class, Credit Scoring, Random Forest, Classification, Resampling


2019 ◽  
Author(s):  
Seda Bilaloglu ◽  
Joyce Wu ◽  
Eduardo Fierro ◽  
Raul Delgado Sanchez ◽  
Paolo Santiago Ocampo ◽  
...  

AbstractVisual analysis of solid tissue mounted on glass slides is currently the primary method used by pathologists for determining the stage, type and subtypes of cancer. Although whole slide images are usually large (10s to 100s thousands pixels wide), an exhaustive though time-consuming assessment is necessary to reduce the risk of misdiagnosis. In an effort to address the many diagnostic challenges faced by trained experts, recent research has been focused on developing automatic prediction systems for this multi-class classification problem. Typically, complex convolutional neural network (CNN) architectures, such as Google’s Inception, are used to tackle this problem. Here, we introduce a greatly simplified CNN architecture, PathCNN, which allows for more efficient use of computational resources and better classification performance. Using this improved architecture, we trained simultaneously on whole-slide images from multiple tumor sites and corresponding non-neoplastic tissue. Dimensionality reduction analysis of the weights of the last layer of the network capture groups of images that faithfully represent the different types of cancer, highlighting at the same time differences in staining and capturing outliers, artifacts and misclassification errors. Our code is available online at: https://github.com/sedab/PathCNN.


Sign in / Sign up

Export Citation Format

Share Document