scholarly journals Evaluation of Cohesive Soil Mixed With Fly Ash and Reinforced With Nylon Fibre

Author(s):  
Utkarsh Gawande ◽  
Shubham Kanhake ◽  
Arjun Lahane ◽  
Prasanna Naghbhide

Black cotton soil is a expansive soil. And mostly found in Vidarbha region of Maharashtra, this soil is highly unstable and it should be stabilize for carry out construction work. Materials like fly ash, rise husk, nylon fiber are used to make soil stable. Addition of such material will increase the physical, chemical and engineering properties of soil. Some of the properties which are improved are CBR value, shear strength, liquidity index, plasticity index, unconfined compressive strength (UCS) and bearing capacity, etc. The main objective of this study was to evaluate the effect of fly ash in stabilization of Black cotton soil. Mainly UCS and other properties of soil were calculated. The tests were conducted on Soil-Fly Ash mixtures, by increasing the Fly Ash percentage in Black cotton soil like 25%, 50%, 75%, and 100%, and then the soil was tested on Soil-Fly Ash - Fibre mixture by adding the fiber in increasing order like 0.5%, 1%, 1.5%. Results were obtained for mixed proportion of 75% soil and 25% fly ash which has unconfined compressive strength of 173 KN/m2. And by adding 1% of nylon fiber in same proportion of soil – fly ash the unconfined compressive strength increased to 243.12 KN/m2. Increase in UCS value can help in reducing the thickness of earthen roads and pavements and increase the bearing capacity and shear strength of soil. With analysis of results it was found that the fly ash along with nylon fiber has good potential to be used as an additive for improving engineering properties of expansive soil.

Abstract. The analysis of GSA for the stabilization of soil samples is the subject of this research paper. In recent years, soil stabilization techniques have been effective in improving the shear strength parameters of poor soils. GSA is a naturally occurring substance that causes human health and environmental issues. Physical properties of soil were calculated, including Atterberg's limits, compaction characteristics, and strength characteristics of virgin soil samples. GSA was applied to the soil in various percentages (2 to 10 percent). The soil sample's intensity increased up to 6% before decreasing. It is clear that 6% of GSA to the soil is an optimum percentage and it leads to an increase in shear strength and bearing capacity in expansive soil.


Processes ◽  
2019 ◽  
Vol 7 (8) ◽  
pp. 478 ◽  
Author(s):  
Yan Zhang ◽  
Hassan Baaj ◽  
Rong Zhao

Coal gangue can cause significant heavy metal pollution in mining areas, which would have a negative impact on the environment and human health. The objective of this research is to investigate the relationship between expansive soil amount and the leaching behavior of Chromium from coal gangue and the engineering properties of coal gangue used as building materials. The leaching behavior of Chromium from coal gangue was observed using atomic absorption spectrometry. A column leaching experiment was conducted to examine the impact of leaching time and heavy metal concentration. Furthermore, the unconfined compressive strength test was employed to evaluate the engineering properties of coal gangue with expansive soil. The results of the study demonstrate that pH of leachate solutions, leaching time, and expansive soil amounts in mixtures have important influence on Chromium concentration. The leachate solutions, which behave like alkaline, provide a positive environment for adsorbing Cr. Adding expansive soil can reduce leached concentrations of Chromium from coal gangue when compared to leachate of original coal gangue. It was found that 30% expansive soil was an improved solution because it delayed the cumulative concentration to reach the limitation line. Moreover, the unconfined compressive strength of coal gangue was boosted through adding expansive soil.


Author(s):  
Shreya Ambagade

Soil Stabilization is the alteration of soils to enhance their physical properties. Stabilization can increase the shear strength of a soil and/or control the shrink-swell properties of a soil, thus improving the load bearing capacity of a sub-grade to support pavements and foundations. The Engineering Properties of soil are depended on the many points like minerals, water table, soil water behaviour etc. which vary as per area to area. Due to which we can’t get desire properties suitable to our needs of construction. To resolve this problem, we have technique called stabilization which means to stable or to modify or to improve the soil properties in positive manner. So, we can have a construction works which fulfil our needs and objective.


2019 ◽  
Vol 8 (4) ◽  
pp. 1921-1926

Expansive soil implies low bearing capacity and high swelling property perhaps causes serious problems during construction includes low stability, non-uniform settlements and shear distribution. The soil stabilization is one such method to improve the process and it depends upon the soil condition and the nature of soil according to the desired requirements of footing. This study aims to increase the index and engineering properties of soil by addition of the natural fiber (sisal), lime and silica fume. Soil stabilization by lime involves the admixture in the form of calcium oxide or calcium hydroxide to the soil and silica fume as an industrial waste by product acts as a pore filling material. The project is economically viable because the stabilizing materials are easily available and less cost. This project is also analyzed by using the PLAXIS software.


Engineering properties of soils are improved by adopting various proven methods such as mechanical and chemical. Strength of locally available soil (Black cotton soil and red soil) was enhanced by application of Microbial Induced Calcite Precipitation (MICP) using species of Bacillus pasteurii. Microbial culture improves the unconfined compressive strength and shear strength of locally available soil. Microbial culture developed from Bacillus pasteurii, was used to stimulate and catalyze the process of calcite precipitation triggered by urea hydrolysis which includes reaction between urea and calcium chloride. This paper includes outcomes of effectiveness of MICP on locally available soil, on three parameters measure of the cementation reagent, measure of Bacillus pasteurii and duration of treatment process. The results elaborated that with the application of MICP, unconfined compressive strength of black cotton soil increased 1.6 to 2.3 times and red soil from 1.8 to 3 times. This gives optimum quantity of microbes and concentration of Cementation reagent as additive to improve strength of black cotton soil and red soil.


2020 ◽  
Vol 19 (2) ◽  
pp. 55-62
Author(s):  
Abul Hasnat ◽  
Safkat Tajwar Ahmed ◽  
Tahmid Mustafa ◽  
Md. Samiullah Chowdhury ◽  
S. M. Prince

The principal aim of the study is to improve the engineering properties of the soil sample using fly ash as a binding material. Bangladeshi fly ash was used in this study. Effects of fly ash on physical and mechanical properties of soil (Atterberg limits, moisture-density relationship, and unconfined compressive strength) are evaluated in the presence of 0%, 2%, 4%, 5%, 8%, 10%, 15%, 20% & 25% fly ash. For understanding the improvement of engineering properties of soil, a parametric analysis is conducted to determine the allowable bearing capacity, settlement and the time required for the consolidation. The allowable bearing capacity is evaluated using several equations for both saturated and unsaturated conditions. It is found that for 5% fly ash content, the maximum allowable bearing capacity is achieved. The maximum value of allowable bearing capacity is 660.12 kN/m2 in the unsaturated condition. The increment of maximum allowable bearing capacity is 77.74% for 5% fly ash content. The lowest value of the settlement was 336 mm (saturated) and 183 mm (unsaturated) for 25% fly ash content. Considering normally consolidated soil, it is found that the least time required for consolidation is 3.19 years for 25% fly ash content.


2020 ◽  
Vol 27 (3) ◽  
pp. 61-66
Author(s):  
Yaseen Yaseen ◽  
Jawdat Abbas

Using industrial waste materials in the treatment of problematic soils is an environmentally friendly and cost-effective technique. It helps in decreasing disposal issues induced by various industrial wastes. Also, it is crucial to understand the behaviour of these waste products before use. This paper presents experimental research in the treatment of expansive soil by the utilization of iron furnace slag. Laboratory program was performed to examine the effect of iron furnace slag on enhancing the engineering properties of expansive soil. Several tests included liquid limits, plastic limits, free swell percentage, swelling pressure, and unconfined compressive strength were conducted on untreated and treated soils. The efficiency of adding 0, 2, 4, and 6 percentages of iron slag to the soil was investigated. The results of the natural and iron slag stabilized soils showed that iron slag has a notable effect on strength parameters and considerable improvement in plasticity and swelling properties. The addition of iron slag to the soil increased the unconfined compressive strength while reduced the swelling potential of soil. It is concluded that the utilization of iron slag to improve the properties of expansive soil is successful and useful


Author(s):  
Phoolwanti Nanda

Abstract: The usage of waste material for stabilizing black cotton soil has been a sustainable interest. Kota stone slurry is a waste from kota stone and fly ash is a waste from industries containing high amount of sodium and magnesium, was used as a soil stabilizer for blac cotton soil improvement in this study. This research investigated the effects of sizes and percentages of kota stone slurry mix and fly ash on the physical and strength properties, which included particle size distribution, Atterberg limits, compaction, and unconfined compressive strength (UCS) of blac cotton soil. Micro structural characterization, including the scanning electron microscopic, energy dispersive X-ray spectroscopy, and X-ray diffraction was conducted on both untreated and treated black cotton soil samples to examine the mechanism of strength development. The addition of kota stone slurry and fly ash reduced the water holding capacity, which then caused the reduction in soil plasticity (from 18 to 11%) and optimum water content (from 20 to 16%) along with the increase in peak dry density (from 1.66 to 1.74 Mg/m3). The strength of black cotton soil may increased from 50 to almost 220 kPa. The optimum kota stone slurry and fly ash contents, providing the highest UCS, were at 20 and 30% for 0.063 mm kota stone slurry and fly ash and 0.15 mm kota stone slurry and fly ash, respectively. The UCS improvement of treated marine clay is attributed to the formation of cementation compounds, mainly aluminum magnesium silicate hydrate (A–M–S–H). The outcome of this research will allow the use of RBT as a low-carbon soil stabilizer across civil engineering applications. Keywords: Stablization, Fly ash, kota stone slurry, Atterberg limits, Compaction, and unconfined compressive strength


Sign in / Sign up

Export Citation Format

Share Document