scholarly journals Effects of Four Essential Oils on Nutrients Digestibility of In Vitro Ruminal Fermentation

2018 ◽  
Vol 42 (2) ◽  
Author(s):  
Asih Kurniawati ◽  
Widodo Widodo ◽  
Wayan Tunas Artama ◽  
Lies Mira Yusiati

This research was done to study the effect of four essential oils (EOs), as feed additives, on ruminal nutrient digestibility in order to find out candidate of rumen modifier. Those four EOs were destilated from Foeniculum vulgare (Mill), Pinus merkusii (Jungh. & de Vriese), Cymbopogon nardus (L.) Rendle and Melaleuca leucadendra (L.). Their effect on dry matter (DM), organic matter (OM), crude protein (CP) and crude fiber (CF) digestibility were studied using in vitro rumen fermentation technique according to Theodorou method. Data were statistically analysed using analysis of variance factorial 4x5 design. Feed for fermentation substrate consist of Pennisetum purpureum, rice bran and wheat pollard. Essential oil individually was added and mix with substrate to meet the final concentration in fermentation media of 0, 100, 200, 400 and 800 mg/l. P. merkusii, C. nardus and M. leucadendra EOs reduced DM, OM, and CF digestibilities. The decreasing were in line with the increasing of EOs doses. Therefore F. vulgare only reduced CF digestibility. The value of DM, OM and CP digestibilities in fermentation with F. vulgare did not differ from control. CP digestibility differed among EO treatments. In F. vulgare, and P. merkusii, treatments, CP digestibility did not differ from control, whereas overall CP digestibility in C. nardus tended to be higher than control and CP digestibility in M. leucadendra was significantly higher. All EOs addition reduced CF digestibility at all level. CF digestibility in fermentation added 800 mg/l of M. leucadendra EO was slumped to only 14.29% of control. Among four EOs M. leucadendra is the most potent on interrupt rumen feed fermentation whereas P. merkusii and C. nardus in moderate ways and F. vulgare in delicate manner.

2021 ◽  
Vol 33 ◽  
pp. 04009
Author(s):  
Asih Kurniawati ◽  
Muhlisin Muhsin Al Anas

The study was designed to determine the effect of a candidate natural feed additive on the kinetics of gas production as a representation of feed degradability and methane produced during rumen fermentation. Three blends of essential oil (BEO) as candidates for feed additives were formulated using pine and eucalyptus essential oils in the following ratios: 75:25, 50:50, and 25:75 for BEO1, BEO2, and BEO3, respectively. Every BEO was added to the batch fermentation system at dosages of 0, 100, and 200 l/l in the medium. Furthermore, an in vitro gas production technique was used to simulate rumen feed fermentation. According to the gas production kinetics, all BEO additives did not affect the total potential gas produced, as well as the potential gas produced from the soluble and insoluble substrate. The rates of gas production were similar among treatments. Furthermore, the addition of BEO did not affect the total volume of gas produced during fermentation. Meanwhile, BEO1 at 200 l/l dose and BEO 3 at 100 l/l dose significantly reduced methane production (P0.05). In conclusion, the BEO1 and BEO 3 at dosages of 200 and 100 l/l, respectively, had the potential as a feed additive to reduce methane production without a negative effect on nutrient digestibility.


2018 ◽  
Vol 41 (1) ◽  
pp. 39492 ◽  
Author(s):  
Rafael Henrique de Tonissi e Buschinelli de Goes ◽  
Luiz Henrique Xavier da Silva ◽  
Tatiana García Díaz ◽  
Antonio Ferriani Branco ◽  
Ana Lúcia Teodoro ◽  
...  

 The objective of this study was to evaluate the effect of the inclusion of sunflower cake replacing soybean meal in beef cattle diets on the in vitro digestibility of dry matter (IVDDM), organic matter (IVDOM), crude protein (IVDCP) and the ruminal fermentation kinetics and parameters. The experiment was analyzed according to a completely randomized design. The treatments consisted of four levels of sunflower cake, 0, 200, 400, 600 g kg-1, replacing soybean meal in the concentrate of beef cattle diets. The coefficients of IVDDM, IVDOM and IVDCP presented a quadratic effect with the addition of sunflower cake. The soluble fraction (fraction B) degradation rate and total gas production decreased linearly with the inclusion of sunflower cake. Values of pH in ruminal fluid were higher for levels 0, 200 and 600 g kg-1 sunflower cake. Sunflower cake can replace soybean meal by up to 280 g kg-1 in the concentrate of beef cattle diets, improving the in vitro digestibility of dry matter organic, matter and crude protein. Levels above 400 g kg-1 reduce ruminal digestion rate, digestibility and release of final fermentation products. 


2016 ◽  
Vol 16 (2) ◽  
pp. 333-341
Author(s):  
Seyed Masoud Davoodi ◽  
Mohsen Danesh Mesgaran ◽  
Ali Reza Vakili ◽  
Reza Valizadeh ◽  
Abdollah Ghasemi Pirbalouti

Present study was conducted to investigate the effect of including plant essential oils on in vitro ruminal fermentation and microbial nitrogen synthesis of a dairy cow diet rich in concentrate. The treatments consisted of the diet alone (control; BD) as well as containing 50 and 100 μl L-1 essential oil of thyme (BDT), mint (BDM), savory (BDS), or a mixture of the essential oils at the rate of 1:1:1 (BDmix). Essential oils decreased gas production at 24, 48 and 96 h of incubation compared with that of BD. However, mint at the rate of 50 or 100 μl L-1 resulted an increase in the microbial nitrogen when compared to BD, BDS and BDT. The nitrogen content of truly undegraded residu (NDFN) content and NH3-N concentration were lower, while the dry matter digestibility was greater in the BDmix, regardless of dosage levels, as compared with the control. The inclusion of a mixture of essential oils at 50 μl L-1 to the basal diet caused intensified dry matter disappearance, in comparison to other treatments. Results showed that the synergetic effects of essential oils together in a dairy cow diet of rich in concentrate can alter rumen microbial fermentation and improve microbial protein yield.


Animals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 1011 ◽  
Author(s):  
Andre S. Avila ◽  
Maximiliane A. Zambom ◽  
Andressa Faccenda ◽  
Maria L. Fischer ◽  
Fernando A. Anschau ◽  
...  

The objective of this study was to evaluate the effect of inclusion of condensed tannins (CT) from black wattle (Acacia mearnsii) on feed intake, ruminal protozoa population, ruminal fermentation, and nutrient digestibility in Jersey steers. Five ruminally-cannulated steers were used in a 5 × 5 Latin square design, with five periods of 20 days each (14 days for diet adaptation and six days for sample collection per period). Treatments were composed of dietary inclusion levels of condensed tannins at 0, 5, 10, 15, and 20 g/kg of diet dry matter. Intakes of dry matter, organic matter, ether extract, crude protein, neutral detergent fiber, and total digestible nutrients were not affected by condensed tannins. The ruminal pH was reduced linearly with tannin levels. Ruminal ammonia nitrogen concentration was not affected by tannins. Tannins reduced the molar proportion of acetate and did not affect the ruminal protozoal population, which might be related to the low doses used. Digestibilities of dry matter, organic matter, and neutral detergent fiber were not altered; however, there was a linear reduction in crude protein digestibility. Based on these results, CT extracts from black wattle are not recommended for improving nutrient utilization in steers at the tested levels.


2020 ◽  
Vol 60 (11) ◽  
pp. 1429 ◽  
Author(s):  
Chanadol Supapong ◽  
Anusorn Cherdthong

Context Feeding of fresh cassava root in ruminants is limited because it contains a high level of hydrocyanic acid (HCN), which is responsible for poisoning. Aims The objective of the present study was to evaluate the effect of sulfur levels supplementation in the fermented total mixed ration (FTMR) containing fresh cassava root as an energy source on the gas kinetics, ruminal fermentation, reduction of HCN concentration and nutrient digestibility in the in vitro gas production. Methods The experimental design was a 3 × 4 factorial in a completely randomised design. Dietary treatments contained factor A, which was three levels of sulfur supplementation at 0, 1 and 2% in FTMR, and factor B was ensiling time at 0, 7, 14 and 21 days respectively. Key results Concentration of HCN in FTMR was significantly reduced (P < 0.05) by 73.7% when sulfur was supplemented in FTMR at 2%. The levels of HCN in FTMR were 2.89, 0.61, 0.61 and 0.49 ppm, for ensiling time of 0, 7, 14 and 21 days, respectively (P < 0.01). HCN was reduced when ensiling started at 7 days. Gas production from soluble fractions (a) ranged from –1.2 to –2.4 and was not significant (P > 0.05). Furthermore, gas production from the insoluble fraction (b) ranged from 48.8 to 53.9, and gas production rate constants for the insoluble fraction (c) ranged from 0.1 to 0.2. The potential extent of gas production (a + b) was also unchanged when the concentration of sulfur increased (P > 0.05). In addition, there were no interactions between sulfur levels and ensiling times on all parameters (P > 0.05). In contrast, cumulative gas production (at 96 h of incubation) was significantly different when sulfur increased at 2% (P < 0.05), while ensiling times did not affect cumulative gas production. Ruminal pH was affected by FTMR and decreased with an ensiling time of 21 days, ranging from 6.0 to 6.1 after ensiling. Ensiling time did not affect ruminal ammonia-nitrogen concentration (P > 0.05) among dietary treatments which ranged from 21.2 to 24.0 mg%. FTMR ensiled for 21 days had the highest in in vitro dry matter digestibility, an in vitro neutral detergent fibre and in vitro acid detergent fibre digestibility which were 61.0–62.5, 35.1–43.1 and 22.3–25.9% dry matter (DM) respectively. Regarding the concentration of total volatile fatty acid (VFA), acetic acid, propionic acid and butyric acid, ranges from 94.7 to 113.6 mmol/L, 59.3 to 67.4, 20.2 to 25.9 and 11.3 to 13.8 mol/100 mol, respectively, were observed and did not differ among treatments (P > 0.05). The concentration of total VFA relative to the sulfur level and ensiling time had no effect on ruminal VFA concentrations. However, exceedingly high percentages of sulfur (2% of the DM) in the diet tend to increase total VFA concentration. Conclusions Using of 2% sulfur supplementation in TMR containing fresh cassava root fermented could improve the kinetics of gas and nutrient digestibility while maintaining ruminal fermentation parameters and the rate of HCN disappearance. Implications These findings should be examined in further in vivo experiments in order to increase animal performance.


2019 ◽  
Vol 46 (1) ◽  
pp. 216-224
Author(s):  
R. M. Akinbode ◽  
S. O. Afuape ◽  
K. O. Adebayo ◽  
A. S. Rafiu ◽  
A. O. Adekoya

The study was aimed at determining the in vitro nutritive value of mixed silages of pennisetum purpureum and orange-fleshed sweet potato vines and evaluating their potential of being a new feed resource for ruminants during the dry season. Pennisetum purpureum (Pp) and orange-fleshed sweet potato vines (OFPV) were ensiled in experimental silos bottles after wilting for 24 hours in the following proportions viz:100%Pp (T1), 75%Pp +25%OFPV (T2), 50%Pp +50%OFPV (T3), 25% Pp +75% OFPV (T4) and 100% OFPV (T5). Each treatment was replicated ten (10) times and was kept for 14 and 28 days in the laboratory at a room temperature (20 – 25°C). The chemical composition of the silage at 14 and 28 days was determined. In vitro gas production of the silages was carried out for 48 hours. In vitro fermentation kinetics and gas production parameters of the silages were also estimated. Results revealed that ensiling periods had significant (p<0.05) effect on the dry matter (DM), crude protein (CP), neutral detergent fibre (NDF) and acid detergent fibre (ADF) contents of the silages. Silage of 28 days had highest CP (13.45%) and lowest NDF and ADF contents (40.10 and 25.48% respectively). Silage containing 100% OFPV recorded highest (p<0.05) crude protein (15.95%), ash (15.81%) and lowest NDF (32.25%) and ADF (22.50%) contents. Gas production was lowest (p<0.05) in T1 at all incubation periods, and it increases with inclusion of OFPV, T5 had significant (p<0.05) highest gas production. Least gas production was observed in T1 at 42 and 48 hours incubation period (15.17 and 17.17 mL/200mg DM respectively). Silage of 28 days had the best potential gas production (37.51 mL). Fractional rate of gas production was higher in 28 days silage (0.06mL/hr), T3 (0.05mL/hr), T4 (0.05mL/hr) and T5 (0.06mL/hr) while lag phase was lowest in these silages. In vitro dry matter digestibility (IVDMD), metabolisable energy (ME) and short chain fatty acids (SCFA) were greater in silage of 28 days (63.73%, 5.01MJ/Kg DM and 0.02mL) with least percentage methane production (33.34%). Also, IVDMD, in vitro organic matter digestibility (OMD), ME, and SCFA increased as level of OFPV in the silages increases with T5 having the highest values for these parameters. Percentage methane production was least (p < 0.05) in T5 (26.55%). It can therefore be concluded that Pennisetum purpureum be supplemented with OFPV up to 75% and ensiled for 28 days or beyond to produce better quality feed resource for ruminants during the dry season. Ensiling 100% OFPV is also highly recommended as it exhibited the best nutritive potential.


2021 ◽  
Vol 51 (2) ◽  
pp. 271-279
Author(s):  
M.R. Kekana ◽  
D. Luseba ◽  
M.C. Muyu

Garlic contains secondary metabolites with antimicrobial properties that can alter nutrient digestibility and rumen fermentation, similar to other antimicrobial products. The objectives of the study were to evaluate the effects of garlic powder and garlic juice on in vitro nutrient digestibility, rumen fermentation, and gas production. The treatments consisted of control with no additives, garlic powder, and garlic juice at 0.5 ml and 1 ml. The digestibility of dry matter, crude protein and neutral detergent fibre were determined after 48 hours incubation. Rumen ammonia nitrogen and volatile fatty acids were determined at 12 hours and 24 hours incubation. The cumulative gas production was recorded periodically over 48 hours. The in vitro dry matter disappearance decreased with 1 ml of garlic juice compared with control. The crude protein degradability in garlic powder and garlic juice was lower than in control. Volatile fatty acids increased in all treatments. Individual volatile fatty acids were significantly different, especially propionate, whereas the acetate to propionate ratio was reduced by garlic juice, and ammonia nitrogen was reduced by garlic powder and 0.5 ml of garlic juice. The cumulative gas production increased significantly with both levels of garlic juice. The addition of garlic juice at 0.5 mL/100 ml could enhance the production of propionate, and reduce the acetate to propionate ratio, implying that the supply of hydrogen for methanogens was limited.


2019 ◽  
Vol 43 (4) ◽  
Author(s):  
Rahma Fitriastuti ◽  
Lies Mira Yusiati ◽  
Budi Prasetyo Widyobroto ◽  
Zaenal Bachruddin ◽  
Chusnul Hanim

The current study was aimed to evaluate the ability of phenol content in cashew nutshell liquid (CNSL) in binding protein and its effect on in vitro nutrient digestibility. This research divided into three steps, there were determination of total phenol and tannins content in CNSL, optimalization binding of CNSL tannin to bovine serum albumin with the determination of protein-percipitable phenolics compound and protein content using Lowry method, after that amount of optimalization supplementation of CNSL was used for measuring on in vitro nutrient digestibility by Tilley and Terry method. The results showed that phenol and tannin content of CNSL were 148.69 g/100 ml and 28.3 g/100 ml. One gram tannin in CNSL could be bound by 65.83 g protein. Optimum tannin were used in this study was 5.85 g tannin or equivalent to 163.91 mg of CNSL. Amount of CNSL were used in various levels, there are 0, 50, 100, 150 dan 200 mg. CNSL supplementation reduced dry matter, organic matter crude protein digestibility in rumen, and didn’t reduce dry matter dan crude protein in vitro post rumen digestibility. Supplementation of CNSL increased feed efficiency on in vitro.


Animals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2843
Author(s):  
Julia Puchalska ◽  
Małgorzata Szumacher-Strabel ◽  
Amlan Kumar Patra ◽  
Sylwester Ślusarczyk ◽  
Min Gao ◽  
...  

This experiment was conducted to study the effects of different concentrations of polyphenols of Paulownia Clon In Vitro 112® leaves or their particular parts on in vitro ruminal fermentation, methane production and microbial population. Paulownia leaves with high (PLH; 31.35 mg/g dry matter (DM)), medium (PLM; 26.94 mg/g DM), and low level of polyphenols (PLL; 11.90 mg/g DM) were used from three plantation areas. Lamina (PLLA; 33.63 mg/g DM) and twigs (PLT; 2.53 mg/g DM) of leaves were also collected from the PLM plantation. The chemical analyses of Paulownia leaves indicated that the content of the most basic nutrients (e.g., crude protein concentration of 185 g/kg of DM) were similar to dehydrated alfalfa. The in vitro results showed that the use of Paulownia leaves with the highest content of total polyphenols (PLH and PLLA) decreased methane production, methanogens numbers, and acetate to propionate ratio. In PLT, lowered methane production was followed by reduced substrate degradability and volatile fatty acid (VFA) concentration along with higher acetate to propionate ratio. Therefore, reduction of methane production in PLH and PLLA was attributed to the lowered methanogen population, whereas in PLT it was caused by decreased substrate degradability with the resultant of limited hydrogen availability to the methanogens.


2021 ◽  
Vol 34 (1) ◽  
pp. 56-65
Author(s):  
Jiang Chun Wan ◽  
Kai Yun Xie ◽  
Yu Xiang Wang ◽  
Li Liu ◽  
Zhu Yu ◽  
...  

Objective: This study was conducted to investigate the effects of molasses and <i>Lactobacillus plantarum</i> on the ensiling quality and <i>in vitro</i> rumen fermentation of sudangrass silage prepared with or without wilting.Methods: The ensiling experiment, measured with 3 replicates, was carried out according to a 2×4 (wilted stages×additives) factorial treatment structure. Dry matter of the fresh (210 g/kg fresh matter) or wilted (305 g/kg fresh matter) sudangrass were ensiled (packed into 5.0-L plastic jars) without additive (control) or with molasses (M), <i>Lactobacillus plantarum</i> (LP), or molasses + <i>Lactobacillus plantarum</i> (M+LP). After 60 days of ensiling, the silages were analyzed for the chemical, fermentation, and <i>in vitro</i> characteristics.Results: After 60 days of ensiling, the fermentation parameters were affected by wilted, the additives and the interactions of wilted with the additives (p<0.05). The M+LP treatment at wilted had higher lactic acid levels and V-score (p<0.05) but lower pH values and butyric acid concentrations than the other treatments. In comparison with sudangrass before ensiling, after ensiling had lower dry matter and higher non-fibrous carbohydrate. The <i>in vitro</i> gas production, <i>in vitro</i> dry matter digestibility, <i>in vitro</i> crude protein digestibility, and <i>in vitro</i> acid fiber detergent digestibility changed under the effects of the additives. Significant interactions were observed between wilted and the additives in terms of <i>in vitro</i> gas production at 48 h, asymptotic gas production, gas production rate, half time, and the average gas production rate. The total volatile fatty acid levels in the additive treatments were higher than those in the control.Conclusion: Wilting and supplementation with molasses and <i>Lactobacillus plantarum</i> had the ability to improve the ensiling quality and <i>in vitro</i> nutrient digestibility of sudangrass silage. The M+LP treatment at wilted exhibited the strongest positive effects on silage quality and <i>in vitro</i> ruminal fermentation characteristics.


Sign in / Sign up

Export Citation Format

Share Document