scholarly journals The Effect of Total or Partial Protected Vegetable Oil Supplementation on In Vitro Digestibility, Feed Fermentability and Energy Efficiency

2019 ◽  
Vol 43 (3) ◽  
Author(s):  
Laily Ismatul Faizah ◽  
Widiyanto Widiyanto ◽  
Anis Muktiani

This study was examines the effect of oil (oil palm and corn) combination with the level of protection (total or partial) on feed fermentability, methane production and energy efficiency with in vitro techniques. The experiment was designed using a factorial pattern 2x2, factor A = type of oil (corn and palm) and factor B = oil protection level (total and partial), each treatment combination was repeated 4 times. Data was processed by analyzing various factorial patterns in a randomized block design and if there was an influence between treatments performed by the Dunca test. The results showed that there was no interaction effect (P>0.05) between the types of oil with the level of protection in all parameters, except NH3. Supplementation of palm oil produces total volatyle fatty acids (VFA), acetate and methane (CH4) production higher than corn oil (P<0.05), but the efficiency of converting hexose energy to VFA (ECH) was lower (P<0.05) (76.09 vs 77.80%). Supplementation of total protected oil decreased in the protozoa population, resulting in higher dry matter digestibility (DMD) and organic matter digestibility (OMD), but lower ECH yield compared to partial protected oil supplementation (P<0.05), ie 76.68 vs 77.22%. The conclusions of the study are corn oil produce of ECH higher than palm oil. Partial protection produce better feed fermentability and increasing energy efficiency in the form of decreasing A/P ratio and methane production.

2020 ◽  
Vol 21 (1) ◽  
pp. 22
Author(s):  
Anis Muktiani ◽  
Nurul Arifah ◽  
Widiyanto Widiyanto

This research was aimed to determine the effect of supplementation of vegetable oil (corn oil, palm oil and kapok seed oil) on in vitro ruminal fermentability and nutrient digestibility. Experiment design used was Randomized Block Design with four treatments and four replication based on rumen fluid sampling time. The four treatments namely R0 = feed without oil supplementation; R1 = R0 + 5% corn oil; R2 = R0 + 5% palm oil; and R3 = R0 + 5% kapok seed oil. The result showed that supplementation of 5% vegetable oil did not affect (P>0,05) the rumen pH, A/P ratio, and efficiency of energy conversion. The total VFA, acetate, propionate, butyrate, methane and NH3 was higher (P<0,05) in supplementation of 5% vegetable oil than he control. The population of protozoa, microbial protein, in vitro dry matter digestibility (IVDMD), organic matter digestibility (IVOMD), and crude fiber digestibility (IVCFD) was lower (P<0,05) in supplementation of 5% compared to the control. Population of protozoa decreased until 58,76% for R1; 66,89% for R2; and 43,33% for R3. It can be concluded that supplementation of 5% vegetable oil decreased the population of protozoa, increased the production of VFA and NH3. Supplementation of 5% kapok seed oil resulting the highest of total VFA, acetate, propionate, butyrate and NH3 among other treatments.


2009 ◽  
Vol 49 (7) ◽  
pp. 563 ◽  
Author(s):  
David B. Coates ◽  
Robert J. Mayer

In a study that included C4 tropical grasses, C3 temperate grasses and C3 pasture legumes, in vitro dry matter digestibility of extrusa, measured as in vitro dry matter loss (IVDML) during incubation, compared with that of the forage consumed, was greater for grass extrusa but not for legume extrusa. The increase in digestibility was not caused by mastication or by the freezing of extrusa samples during storage but by the action of saliva. Comparable increases in IVDML were achieved merely by mixing bovine saliva with ground forage samples. Differences were greater than could be explained by increases due to completely digestible salivary DM. There was no significant difference between animals in relation to the saliva effect on IVDML and, except for some minor differences, similar saliva effects on IVDML were measured using either the pepsin–cellulase or rumen fluid–pepsin in vitro techniques. For both C4 and C3 grasses the magnitude of the differences were inversely related to IVDML of the feed and there was little or no difference between extrusa and feed at high digestibilities (>70%) whereas differences of more than 10 percentage units were measured on low quality grass forages. The data did not suggest that the extrusa or saliva effect on digestibility was different for C3 grasses than for C4 grasses but data on C3 grasses were limited to few species and to high digestibility samples. For legume forages there was no saliva effect when the pepsin–cellulase method was used but there was a small but significant positive effect using the rumen fluid–pepsin method. It was concluded that when samples of extrusa are analysed using in vitro techniques, predicted in vivo digestibility of the feed consumed will often be overestimated, especially for low quality grass diets. The implications of overestimating in vivo digestibility and suggestions for overcoming such errors are discussed.


2022 ◽  
Vol 335 ◽  
pp. 00047
Author(s):  
Poespitasari Hazanah Ndaru ◽  
Siti Chuzaemi ◽  
Muhimmatu Mufidah

The purpose of this research was to determine the influence of Myristic acid and the source of condensed tannin on corn straw basedcomplete feed on nutrient content and in vitro digestibility. The method which was used in this experiment was randomized block design with four treatments and three replications. The treatment consisted of T0 complete feed (40% corn straw + 60% concentrate), T1 complete feed (40% corn straw + 60% concentrate + myristic acid 30 g/Kg DM), T2 complete feed (40% corn straw + 50% concentrate + calliandra leaf meal 10%/Kg DM and myristic acid 30 g/Kg DM), T3 complete feed (40% corn straw + 45% concentrate + calliandra leaf meal 15%/Kg DM and myristic acid 30 g/Kg DM), T4 (40% corn straw + 40% concentrate + calliandra leaf meal 20%/Kg DM and myristic acid 30 g/Kg DM). Based on the result, it could be concluded that calliandra leaf meal 15%/Kg DM + Myristic acid 30 g/Kg DM on the complete feed (T3) was the best treatment based on nutrient content and increase of dry matter digestibility, but not an effect of organic matter digestibility


2016 ◽  
Vol 56 (10) ◽  
pp. 1700
Author(s):  
J. M. Cantet ◽  
D. Colombatto ◽  
G. Jaurena

The objective was to assess the impact of application of two enzyme mixtures on the in vitro dry matter digestibility, neutral detergent fibre digestibility, net cumulative gas production and methane production after 24 h of incubation of Milium coloratum (formely Panicum coloratum) and a Patagonian meadow grassland. A protease (Protex 6-L) and a fibrolytic enzyme (Rovabio) were assessed at three application rates (30, 60 and 90 mg/100 mL of distiller water) on the substrates. Meadow samples were higher to Milium ones (P < 0.05) for in vitro dry matter digestibility and net cumulative gas production at 24 h. Nevertheless, Milium was ~11% higher than meadow (P < 0.05) for methane when expressed as a proportion of digested dry matter (g/kg). Rovabio did not induce differences in any variable, but the addition of Protex reduced (P < 0.05) in vitro dry matter digestibility in both substrates without bringing about differences in methane production. Collectively, the addition of these enzymes did not benefit in vitro ruminal fermentation of low quality forages.


2011 ◽  
Vol 40 (4) ◽  
pp. 708-714 ◽  
Author(s):  
H. Caetano ◽  
M.D.S. Oliveira ◽  
J.E. Freitas Júnior ◽  
A.C. Rêgo ◽  
M.V. Carvalho ◽  
...  

The objective of this study was to evaluate the nutritional traits and in vitro digestibility of silages from different corn cultivars harvested at two cutting heights. It was evaluated 11 cultivars (Dina 766, Dina 657, Dina 1000, P 3021, P 3041, C 805, C 333, AG 5011, FO 01, Dina co 9621 and BR 205) harvest 5 cm above ground (low) and 5 cm below the intersection of the first ear (high). It was used a random block design (three blocks), arranged in a 11 × 2 factorial scheme. Silages from plants harvested at high cutting height presented average content of dry matter significantly superior to silages from plants harvested at low height. Cultivars FO 01, AG 5011, Dina co 9621 and Dina 766 presented greater content of crude protein than cultivars C 805, P 3041 and P 3021, which presented the lowest contents of this nutrient. The raise in the cut height increased in vitro dry matter true digestibility coefficients and in vitro dry matter digestibility of silage evaluated. The increase in cut height improved nutritive value of silages by decreasing concentrations of fibrous fractions and increasing in vitro dry matter digestibility.


2012 ◽  
Vol 35 (1) ◽  
pp. 30
Author(s):  
Endang Dwi Purbajanti ◽  
R. Djoko Sutrisno ◽  
Eko Hanudin ◽  
Subur Priyono Sasmito Budhi

<p>The aim of this study was to evaluate performance and in vitro digestibility of Guinea grass grown on saline soil. Yield, quality, and in vitro digestibility of Guinea grass cultivated on coastal area with crop populations of 10,000,<br />20,000, and 30,000 plants per hectare. Experiment was conducted following randomized complete block design (RCBD). Higher crop population increased fresh and DM biomass production, crude protein (CP) yield, dry matter<br />(DM) content, neutral detergent fiber (NDF), lignin, and hemicellulose content, but decreased CP content, and in vitro organic matter digestibility (OMD). The increased population had no effect on acid detergent fiber (ADF) and in vitro<br />dry matter digestibility (DMD). It could be concluded that guinea grass was recommended to be planted in saline coastal area by addition of fertilizer 20 tons/ha manure, 3 tons/ha gypsum, and 50 kg N (239 kg ZA/ha) as source of<br />nitrogen.</p><p><br />(Keywords: Forage, Salinity, Saline soil, Manure, Gypsum, Nitrogen source)<br /><br /></p>


2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 404-404
Author(s):  
Leeroy A Lente ◽  
Roderick A Gonzalez Murray ◽  
Shawn L Archibeque

Abstract The aim of this study was to assess the effects of Zeolite (ZE, clinoptilolite) inclusion on in vitro rumen fermentation. A modified procedure from Tilley and Terry (1963) was used to determine alfalfa in vitro dry matter digestibility (IVDMD) in the presence or absence of ZE. Test tubes (n = 96) were placed in a 39 °C bath and were blocked based on hours 0, 1, 2, 4, 6, 8, 12, 24, and 48. Substrate consisted of dried alfalfa grinded through a 1mm screen using a Wily Mill. Treatments consisted of, Control (no ZE inclusion), and 0.05g ZE, for each 1 gram of alfalfa. After incubation, IVDMD was calculated 24 hours after drying period. Data was analyzed using a randomized block design. The IVDMD was found to be similar across all treatments (P &gt; 0.8464). The IVDMD was significantly different when incubated for the varying lengths of time (P &lt; 0.001). There was an IVDMD of 20.18 ± 2.89 % for the control and 18.07 ± 5.49 % for the ZE at the zero hour. The IVDMD for Control and ZE for 48 hours were 54.30 ± 1.58 % and 53. 48 ± 1.04 % respectively. To predict the IVDMD of the effects of ZE treatment on digestibility over time, the corresponding regression f(x) = 20.60 + 0.421X1 + 0.730X2 with R2 = 0.8464. In conclusion these data demonstrate that inclusion of ZE, does not influence the in vitro digestibility of alfalfa. These findings are important as previous data would indicate that inclusion of ZE may reduce cost of gain and/or influence liver abscess rates, it was uncertain if that would come at the cost of reduced digestibility of feed. These data indicate that there is likely very little to no impact on feed digestibility when ZE is included in the ration.


2020 ◽  
Vol 44 (1) ◽  
Author(s):  
Oluwatosin Bode Omotoso ◽  
Mary Oluwafunmilayo Adeduntan ◽  
Adebowale Noah Fajemisin

Abstract Background The study highlighted the potential of three common and under-utilized tropical leguminous seeds (Tomentosa nilotica, Dioclea reflexa and Monodora myristica) to be used as supplementary feed to ruminant livestock. These seeds (their plants inclusive) are valuable sources of food and medicine for the prevention of illness and maintenance of human health. The medicinal properties of these seeds include antimicrobial, anti-inflammatory, anti-oxidant and immuno-stimulant. Trypsin inhibitors, which are common anti-nutritional factors in legumes and for monogastric animals, do not exert adverse effects in ruminants because they are degraded in the rumen. Hence, the crux of this study is to examine the effect of processing methods on the nutritional composition (proximate, fibre fractions, minerals, anti-nutrients) and in vitro digestibility of Tomentosa nilotica, Dioclea reflexa and Monodora myristica seeds and their suitability as feedstuff (protein sources) in small ruminant feed, particularly during off-season. Results From the results, raw Tomentosa nilotica and Monodora myristica have the highest crude protein (30.35% CP) and fat (22.40% EE), respectively. It is noteworthy that roasting best improve the mineral and significantly reduce the anti-nutrients observed in this study better compared to boiling and soaking methods. The highest organic matter digestibility, short-chain fatty acids, metabolizable energy and in vitro dry matter digestibility values were obtained in Dioclea reflexa compared to other test seeds. Roasting best improved the nutritive values, while Dioclea reflexa seed was rated highest for all the nutritional attributes and in vitro digestibility. Conclusions Dioclea reflexa could be incorporated in ruminants’ diet as protein source, particularly during the off-season, for improved ruminant production in Nigeria. However, in vivo study is therefore recommended to validate this report.


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 182-182
Author(s):  
Marjorie A Killerby ◽  
Diego Zamudio ◽  
Kaycee Ames ◽  
Darren D Henry ◽  
Thomas Schwartz ◽  
...  

Abstract This study evaluated the effects of preservatives on the in vitro fermentation measures of wet brewer’s grain (WBG) silage at different stages of storage. Treatments (TRT) were sodium lignosulfonate at 1% (NaL1) and 2% (NaL2; w/w of fresh WBG), propionic acid (PRP; 0.5% w/w of fresh WBG), a combination inoculant (INO; Lactococcus lactis and Lactobacillus buchneri each at 4.9 log cfu/fresh WBG g), and untreated WBG (CON). WBG (Fresh) were packed into 8.8 L mini-silos and stored for 60 d at 21°C (Ensiled), then they were opened and aerobically exposed for 10d (AES). Samples from each stage of storage (STG; Fresh, Ensiled and AES) were analyzed for in vitro ruminal digestibility (24 h).Gas kinetics were recorded using the Ankom RF Gas Production System. Data were analyzed as a randomized complete block design (5 blocks) with a 5 (TRT) × 3 (STG) factorial arrangement. Apparent in vitro DM digestibility (DMD) decreased across STG, (51.5, 47.2 and 40.9 for Fresh, Ensiled and AES, respectively) and increased for NaL1, NaL2 and PRP (~47.8) vs. CON (43.0 ± 2.12%). PRP increased apparent in vitro OM digestibility (OMD) when Ensiled (54.5) and NaL2 increased it for AES (47.1) vs CON (46.3 and 39.9 ± 1.73%, respectively). The asymptotic maximal (M) and rate (k) of gas production decreased across STG (214.6, 181.5, 155.1 and 14.6, 12.6, and 9.8, for Fresh, Ensiled and AES, respectively). PRP increased (200.0) and NaL1 decreased (169.3) M vs. CON (183.9± 7.81ml/incubated DM g), while NaL1 and NaL2 (~11.4) decreased k vs. CON (13.4 ± 0.85%/h). Methane concentration and yield were higher in Fresh vs. other STG (0.94 vs. ~0.84 ± 0.07mM and 0.27 vs. ~0.23 ± 0.03mmol/g fermented OM). Spoilage of WBG decreases fermentability and methane production while PRP and NaL improve digestibility with the former also increasing M and k.


2017 ◽  
Vol 39 (2) ◽  
pp. 137
Author(s):  
Marielly Maria Almeida Moura ◽  
Daniel Ananias de Assis Pires ◽  
Renê Ferreira Costa ◽  
Daniella Cangussú Tolentino ◽  
João Paulo Sampaio Rigueira ◽  
...  

 This study aimed to evaluate the nutritional characteristics and quality of silages of five sorghum genotypes, namely: Volumax, AG2005E, Qualimax, BRS610 and AG2501. The study was conducted at the Experimental Farm Unimontes, in the municipality of Janaúba, state of Minas Gerais. The treatments were distributed in a randomized block design with four replicates. Data were tested by analysis of variance andmeans were compared by Scott-Knott test at a significance level of 5%. The pH values ranged from 3.93 and 4.10. Genotypes differed in all studied nutritional characteristics (p < 0.05). For the acid detergent fiber, differences were detected between the genotypes, AG2501 (35.66%), Volumax (34.89%), AG2005E (34.53%), Qualimax (32.39%) and BRS610 (33.60%). The high participation of lignin was verifiedin all genotypes except for Volumax (4.14%). All silages were within the recommended range 50-65% for in vitro dry matter digestibility and classified as having good quality, however only the AG2005E genotype met nitrogen requirements for microbial fermentation, with 7.06% crude protein. 


Sign in / Sign up

Export Citation Format

Share Document