scholarly journals QTL Study to Reveal Soybean Response on Abiotic and Biotic Stresses

2016 ◽  
Vol 10 (3) ◽  
pp. 109
Author(s):  
Puji Lestari ◽  
Sutrisno Sutrisno ◽  
I Made Tasma

<p>As an important grain legume, the improved soybean<br />(Glycine max [L.] Merr.) adaptive to environmental changes<br />is a valuable genetic resource. Strategy to minimize the<br />impact of climate effects should be underlined on soybean<br />production encompassing advanced genomics and well<br />predicted future climate. Crops including soybean respond<br />to climate change in the aspect of abiotic and biotic<br />environmental factors. To predict soybean response to<br />abiotic and biotic stresses, current progress of quantitative<br />trait loci (QTL) for abiotic and biotic stresses and flowering<br />and related genomic resources could be accessed at<br />SoyBase (http://www.soybase.org) and Phytozome<br />(http://www.phytozome.net). As the involvement of abiotic<br />and biotic stresses modulating flowering in soybean, genes<br />linked to QTL for abiotic/biotic stress and flowering/maturity<br />were also potential for resisting the environmental changes.<br />By mapping QTLs for flowering using one population in<br />different locations (Korea and China) with distinctive<br />longitude, latitude, and altitude, syntenic correlation<br />between these two QTLs on soybean chromosomes 6 and<br />13 indicates the environmental specific role of syntenic<br />regions. The information on QTL and related candidate<br />genes may assist marker-assisted breeding and enact<br />soybean as a model of adaptive legume crop under abiotic/<br />biotic stress.</p>

2020 ◽  
Vol 71 (12) ◽  
pp. 3405-3416 ◽  
Author(s):  
Haiyan Ding ◽  
Bipeng Wang ◽  
Yi Han ◽  
Shengchun Li

Abstract Under natural conditions, plants are exposed to various abiotic and biotic stresses that trigger rapid changes in the production and removal of reactive oxygen species (ROS) such as hydrogen peroxide (H2O2). The ascorbate-glutathione pathway has been recognized to be a key player in H2O2 metabolism, in which reduced glutathione (GSH) regenerates ascorbate by reducing dehydroascorbate (DHA), either chemically or via DHA reductase (DHAR), an enzyme belonging to the glutathione S-transferase (GST) superfamily. Thus, DHAR has been considered to be important in maintaining the ascorbate pool and its redox state. Although some GSTs and peroxiredoxins may contribute to GSH oxidation, analysis of Arabidopsis dhar mutants has identified the key role of DHAR in coupling H2O2 to GSH oxidation. The reaction of DHAR has been proposed to proceed by a ping-pong mechanism, in which binding of DHA to the free reduced form of the enzyme is followed by binding of GSH. Information from crystal structures has shed light on the formation of sulfenic acid at the catalytic cysteine of DHAR that occurs with the reduction of DHA. In this review, we discuss the molecular properties of DHAR and its importance in coupling the ascorbate and glutathione pools with H2O2 metabolism, together with its functions in plant defense, growth, and development.


2021 ◽  
Vol 7 (11) ◽  
pp. 939
Author(s):  
Mila Santos ◽  
Ignacio Cesanelli ◽  
Fernando Diánez ◽  
Brenda Sánchez-Montesinos ◽  
Alejandro Moreno-Gavíra

Endophytic fungi have been studied in recent decades to understand how they interact with their hosts, the types of relationships they establish, and the potential effects of this interaction. Dark septate endophytes (DSE) are isolated from healthy plants and form melanised structures in the roots, including inter- and intracellular hyphae and microsclerotia, causing low host specificity and covering a wide geographic range. Many studies have revealed beneficial relationships between DSE and their hosts, such as enhanced plant growth, nutrient uptake, and resistance to biotic and abiotic stress. Furthermore, in recent decades, studies have revealed the ability of DSE to mitigate the negative effects of crop diseases, thereby highlighting DSE as potential biocontrol agents of plant diseases (BCAs). Given the importance of these fungi in nature, this article is a review of the role of DSE as BCAs. The findings of increasing numbers of studies on these fungi and their relationships with their plant hosts are also discussed to enable their use as a tool for the integrated management of crop diseases and pests.


2021 ◽  
Vol 64 (6) ◽  
pp. 1747-1754
Author(s):  
Yohsuke Inagaki ◽  
Rina Akune ◽  
Ayano Matsuda ◽  
Shinichiro Kuroki ◽  
Kenji Takisawa ◽  
...  

HighlightsThis study investigates the use of laser speckle to evaluate chloroplast movement in plant cells.The analysis value of the laser speckle corresponds to chloroplast movement.The run-length matrix analysis that we propose is more sensitive than existing methods.Abstract. Abiotic and biotic stresses change the cytoplasmic streaming in plant cells. In particular, the state of chloroplast movement changes rapidly in response to environmental changes. Thus, detecting chloroplast movement allows us to comprehend the physiological state of plants. This study investigated the applicability of the laser speckle method for evaluating chloroplast movement. Moreover, we propose a new analysis method for sensitively evaluating chloroplast movement. Leaves of Egeria densa were used, and electrical stimulation was applied as recoverable abiotic stress. Laser speckle measurement and light microscopic observation of the same specimen were performed before and after stimulation. The results showed that the laser speckle method can nondestructively evaluate macroscopic and collective chloroplast movement. The proposed method was more sensitive to chloroplast movement than existing methods. Keywords: Chloroplast, Image processing, Laser speckle, Textual analysis.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Chunhua Chen ◽  
Xueqian Chen ◽  
Jing Han ◽  
Wenli Lu ◽  
Zhonghai Ren

Abstract Background Cucumber (Cucumis sativus L.) is an economically important vegetable crop species. However, it is susceptible to various abiotic and biotic stresses. WRKY transcription factors play important roles in plant growth and development, particularly in the plant response to biotic and abiotic stresses. However, little is known about the expression pattern of WRKY genes under different stresses in cucumber. Results In the present study, an analysis of the new assembly of the cucumber genome (v3.0) allowed the identification of 61 cucumber WRKY genes. Phylogenetic and synteny analyses were performed using related species to investigate the evolution of the cucumber WRKY genes. The 61 CsWRKYs were classified into three main groups, within which the gene structure and motif compositions were conserved. Tissue expression profiles of the WRKY genes demonstrated that 24 CsWRKY genes showed constitutive expression (FPKM > 1 in all samples), and some WRKY genes showed organ-specific expression, suggesting that these WRKYs might be important for plant growth and organ development in cucumber. Importantly, analysis of the CsWRKY gene expression patterns revealed that five CsWRKY genes strongly responded to both salt and heat stresses, 12 genes were observed to be expressed in response to infection from downy mildew and powdery mildew, and three CsWRKY genes simultaneously responded to all treatments analysed. Some CsWRKY genes were observed to be induced/repressed at different times after abiotic or biotic stress treatment, demonstrating that cucumber WRKY genes might play different roles during different stress responses and that their expression patterns vary in response to stresses. Conclusions Sixty-one WRKY genes were identified in cucumber, and insight into their classification, evolution, and expression patterns was gained in this study. Responses to different abiotic and biotic stresses in cucumber were also investigated. Our results provide a better understanding of the function of CsWRKY genes in improving abiotic and biotic stress resistance in cucumber.


2020 ◽  
Author(s):  
Anil Dahuja ◽  
Ranjeet R. Kumar ◽  
Akshay Sakhare ◽  
Archana Watts ◽  
Bhupinder Singh ◽  
...  

2015 ◽  
Vol 81 (14) ◽  
pp. 4791-4800 ◽  
Author(s):  
Erin DiCaprio ◽  
Anastasia Purgianto ◽  
Jianrong Li

ABSTRACTHuman norovirus (NoV) is the major causative agent of fresh-produce-related outbreaks of gastroenteritis; however, the ecology and persistence of human NoV in produce systems are poorly understood. In this study, the effects of abiotic and biotic stresses on the internalization and dissemination of two human NoV surrogates (murine norovirus 1 [MNV-1] and Tulane virus [TV]) in romaine lettuce were determined. To induce abiotic stress, romaine lettuce was grown under drought and flood conditions that mimic extreme weather events, followed by inoculation of soil with MNV-1 or TV. Independently, lettuce plants were infected with lettuce mosaic virus (LMV) to induce biotic stress, followed by inoculation with TV. Plants were grown for 14 days, and viral titers in harvested tissues were determined by plaque assays. It was found that drought stress significantly decreased the rates of both MNV-1 and TV internalization and dissemination. In contrast, neither flood stress nor biotic stress significantly impacted viral internalization or dissemination. Additionally, the rates of TV internalization and dissemination in soil-grown lettuce were significantly higher than those for MNV-1. Collectively, these results demonstrated that (i) human NoV surrogates can be internalized via roots and disseminated to shoots and leaves of romaine lettuce grown in soil, (ii) abiotic stress (drought) but not biotic stress (LMV infection) affects the rates of viral internalization and dissemination, and (iii) the type of virus affects the efficiency of internalization and dissemination. This study also highlights the need to develop effective measures to eliminate internalized viruses in fresh produce.


Horticulturae ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 6
Author(s):  
Agnieszka Hanaka ◽  
Małgorzata Majewska ◽  
Jolanta Jaroszuk-Ściseł

In changing environmental conditions, horticulture plants are affected by a vast range of abiotic and biotic stresses which directly and indirectly influence plant condition [...]


Agronomy ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2198
Author(s):  
Mireille Asanzi Mvondo-She ◽  
Auges Gatabazi ◽  
Mark Delmege Laing ◽  
Ashwell Rungano Ndhlala

This paper reviews the threat of citrus pathogens during citrus production, with a focus on two pre-harvest diseases, citrus leaf spot, caused by Alternaria alternata (Fr.) Keissl. (1912) and brown rot, caused by Phytophthora citrophthora (R.E. Sm. and E.H. Sm.) Leonian, (1906) as well as green and blue mold post-harvest disease, caused by Penicillium digitatum (Pers.) Sacc. and P. italicum Wehmer, (1894), respectively. Furthermore, it reviews the role of soluble silicon, Si nutrition in biotic stress mitigation and potential mitigation mechanisms. Previous studies on the use of Si fertilizers have focused on high accumulator Si crops. These have demonstrated the potential of Si to reduce the occurrence of biotic stresses, which takes place through both physical and biochemical mechanisms. However, few studies have demonstrated the potential of Si to mitigate biotic stress in citrus, or the mechanisms involved. There is a clear need for studies on the impact of Si on various stress biochemical pathways in plants generally, and specifically for citrus due to the huge loss caused by pre- and post-harvest pathogens. This will assist in deepening our understanding of the pathophysiology which is essential to develop resistant cultivars.


Author(s):  
Halina G. Filiptsova

Plant elicitor peptides (Peps) are one class of elicitor substances, which are formed in plant cells in response to various biotic stressors and induced of nonspecific plant resistance. They are present and active in angiosperms, including many important agricultural crops, and can be considered as a promising class of compounds for creating environmentally safe drugs that induce phytoimmunity and increase the resistance of plants to stress. In this paper, an analysis of current literature data on the functional activity of endogenous plant elicitor peptides, the mechanisms of Pep-signaling and their role in plant resistance to biotic stresses is carried out.


Sign in / Sign up

Export Citation Format

Share Document