scholarly journals Reengineering Cracker-Dryer Machine Based on Fan speed and Temperature Considering Drying Time, Final Weight and Energy Consumption Factor

Author(s):  
Emon Rifa'i ◽  
Sabarudin Ahmad ◽  
Anis Arendra ◽  
Rifky Maulana Yusron

Redesign and building a cracker drying machine should give priority to several factors to find the optimal point, one of which is by conducting experimental experiments. This research was carried out to find out from the tool and also pay attention to several things, such as temperature and fan speed. If one of these factors is ignored, it will not produce dry crackers and the dried crackers are less than optimal. The Independent parameters used in this research are temperature and fan speed. Dependent parameters used in this research are concerning drying time, final weight, and energy consumption. Design experiment using Factorial 3x3. Fan speed has 3 levels, they are 1000rpm, 1500rpm and 2000rpm. The Temperature parameter has 3 levels, they are 16, 19, and 21oC. Based on the design of experiment results, it was found that the drying time response for the combination that has the highest ranking is at a temperature of 19oC with a 2000rpm fan speed resulting in a drying time of 182,677 minutes.

2020 ◽  
Vol 5 (1) ◽  
pp. 563-572
Author(s):  
Iman Golpour ◽  
Mohammad Kaveh ◽  
Reza Amiri Chayjan ◽  
Raquel P. F. Guiné

AbstractThis research work focused on the evaluation of energy and exergy in the convective drying of potato slices. Experiments were conducted at four air temperatures (40, 50, 60 and 70°C) and three air velocities (0.5, 1.0 and 1.5 m/s) in a convective dryer, with circulating heated air. Freshly harvested potatoes with initial moisture content (MC) of 79.9% wet basis were used in this research. The influence of temperature and air velocity was investigated in terms of energy and exergy (energy utilization [EU], energy utilization ratio [EUR], exergy losses and exergy efficiency). The calculations for energy and exergy were based on the first and second laws of thermodynamics. Results indicated that EU, EUR and exergy losses decreased along drying time, while exergy efficiency increased. The specific energy consumption (SEC) varied from 1.94 × 105 to 3.14 × 105 kJ/kg. The exergy loss varied in the range of 0.006 to 0.036 kJ/s and the maximum exergy efficiency obtained was 85.85% at 70°C and 0.5 m/s, while minimum exergy efficiency was 57.07% at 40°C and 1.5 m/s. Moreover, the values of exergetic improvement potential (IP) rate changed between 0.0016 and 0.0046 kJ/s and the highest value occurred for drying at 70°C and 1.5 m/s, whereas the lowest value was for 70°C and 0.5 m/s. As a result, this knowledge will allow the optimization of convective dryers, when operating for the drying of this food product or others, as well as choosing the most appropriate operating conditions that cause the reduction of energy consumption, irreversibilities and losses in the industrial convective drying processes.


Author(s):  
Ana Sakura Zainal Abidin ◽  
◽  
Mohamad Zulhatta Kifli ◽  
Annisa Jamali ◽  
Rasli Muslimen ◽  
...  

Rotary drum dryer has been identified as hygienic and practical method to dry black pepper. The quality of black pepper is defined based on the chemical properties and moisture content. This research aims to develop a control system for black pepper rotary drum dryer. The dried pepper should meet the specific 12% moisture content while the heating temperature must be kept below 550C. The requirement of 12% moisture content is equivalent to 30% of the remaining weight of the pepper (final weight). The developed system uses Arduino Mega 2560 REV board as a microcontroller. A type K thermocouple with MAX6675 thermocouple amplifier and S-type load cells (TAS501) with HX711 load cell amplifier are used as input sensor to microcontroller. The system keeps measuring the current weight until it hit the targeted final weight. Two set of experiments that are using 500 g and 1500 g of pre-treated pepper were conducted to verify the system. As a result, the dryer was successful to work within the desired temperature and it stop operating just after the samples reached 12% of the moisture content. The finding has proven a shorten of drying time from 4 to 7 days when using the traditional method to the current 3 – 5 hours only when using the developed system. Hence, this is an improved method achieved to a quick drying of the black pepper.


2018 ◽  
Vol 37 (11) ◽  
pp. 1396-1404 ◽  
Author(s):  
Pero Gatarić ◽  
Brane Širok ◽  
Marko Hočevar ◽  
Lovrenc Novak

2018 ◽  
Vol 30 (3) ◽  
pp. 412-427 ◽  
Author(s):  
Yuhui Wei ◽  
Zhaowei Su ◽  
Huashan Lu ◽  
Xue Mei Ding

Purpose The purpose of this paper is to develop an efficient termination control strategy of air-vented dryer in term of energy saving, improving smoothness and reducing microscopic damage of fiber. Design/methodology/approach A simple, low cost termination control strategy is developed by testing the instantaneous humidity of exhaust air and then deducing the drying degree of fabric in process. The practicability evaluation of this novel strategy was investigated by using both experimental and mathematical approaches. The effect of termination control strategy on drying efficiency and fabric apparent properties were also discussed. Findings Termination control strategy significantly affects drying time, energy consumption, smoothness and microscopic of fiber. Specially, a novel termination control strategy that the combination of equilibrium moisture content of fabric in ambient environment and relative humidity of exhaust air in exhaust duct is workable and can save 25.2 percent of energy consumption, 26.7 percent of the drying time and improve 0.7 grade of the appearance smoothness, as well as significantly reduce the microscopic damage of fiber compare to the original control strategy of dryer. This indicates possible ways to minimize drying energy consumption and dryer damage by reducing unnecessary migrate out of the water from the clothes. Practical implications The paper is helpful in not only the development of new drying product but also the optimization of appearance smoothness of fabric after drying and reduce the microscopic damage of fiber. Originality/value A novel termination control strategy of dryer is applied to improve drying efficiency of dryer and reduce fabric damage.


Author(s):  
Magesh Ganesh Pillai ◽  
Iyyasamy Regupathi ◽  
Lima Rose Miranda ◽  
Thanapalan Murugesan

The drying characteristics of plaster of paris (POP) under microwave conditions at different microwave power input, initial moisture content, sample thickness and drying time were studied. Further the experimental data on moisture ratio of POP for different operating conditions were obtained and calculations were made using nine basic drying model equations. The appropriate model with modified constants and coefficients to represent the drying kinetics of POP was found through the analysis of the statistical analysis. The effective moisture diffusivity of the drying process was also computed for different experimental conditions and a relationship between the drying rate constant and the effective moisture diffusivity was obtained. The energy consumption for microwave drying of plaster of paris at different experimental conditions were also computed.


Volume 1 ◽  
2004 ◽  
Author(s):  
A. W. Lees ◽  
J. M. J. Khamaj ◽  
W. D. Morris ◽  
S. W. Chang

This investigation studies convective heat transfer in a square-sectioned duct that rotates about an axis perpendicular to the central axis of the duct. The leading and trailing sides of the duct are fitted with in-line ribs aligned at 45° to the central axis of the duct. The leading and trailing edges are heated and the two remaining sidewalls of the duct are adiabatic. Air is the coolant used and the direction of flow is in the radial outward direction. The duct simulates the flow and heat transfer that occurs in the passages of cooled turbine rotor blades. The presentation of results is in itself a non-trivial task as the heat transfer is a function of three independent parameters. It is shown how the performance of the section may be expressed in terms of a reduced temperature parameter and that this approach offers additional insight as compared to the conventional Nusselt number approach (which may be obtained by a simple transformation. The investigation has produced a range of experimental data to aid the validation of CFD codes designed to predict heat transfer in this class of rotating duct. Additionally empirical correlations for heat transfer on the leading and trailing edges are proposed that uncouple the individual effects of Coriolis forces and centripetal buoyancy.


2020 ◽  
Vol 4 (4) ◽  
pp. 422-431
Author(s):  
Iqbal Fahri Tobing ◽  
Mustaqimah Mustaqimah ◽  
Raida Agustina

Abstrak. Pengering tipe Tray Dryer merupakan salah satu alat pengering rak atau pengering kabinet yang dapat digunakan untuk mengeringkan berbagai jenis bahan baku makanan. Alat pengering ini dirancang dengan tipe paralel flow tray dimana udara panas yang dihasilkan akan disirkulasikan sejajar dengan permukaan rak pengering dan bekerja menggunakan sumber energi listrik. Penelitian ini bertujuan untuk memodifikasi pengering tray dryer dengan penambahan insulator dan mengetahui konsumsi energi alat pengering tray dryer pada pengeringan kunyit. Parameter pengujian uji kinerja alat tanpa bahan meliputi distribusi suhu, kelembaban relatif dan kecepatan aliran udara dan untuk perhitungan konsumsi energi meliputi penggunaan energi listrik, perhitungan energi thermal, energi mengeringkan bahan, energi untuk menguapkan air bahan, efisiensi pengeringan, energi kipas dan kehilangan energi melalui cerobong. Pada pengujian pengering tray dryer suhu yang digunakan adalah 55°C. Hasil penelitian menunjukkan bahwa secara fungsional dan struktural alat pengering tray dryer setelah dimodifikasi dengan melapisi dinding luar ruang pengering dapat beroperasi dengan baik, proses pengeringan lebih cepat dan energi yang digunakan juga sedikit dibandingkan dengan sebelum dimodifikasi. Konsumsi energi listrik pada alat pengering tray dryer setelah dimodifikasi pada saat proses pengeringan dengan suhu 35oC selama 6,5 jam sebesar 35,33 kWh (127,2 MJ), pada suhu 45oC sebesar 24,26 kWh (88,06 MJ) dengan lamanya pengeringan selama 4,5 jam dan suhu 55oC sebesar 18,89 kWh (68,01 MJ) dengan lama pengeringan selama 3,5 jam, hal ii disebabkan lama pengeringan merupakan salah satu faktor yang menyebabkan besar kecilnya konsumsi energi listrik. Konsumsi energi thermal selama proses pengeringan dengan suhu 35°C adalah sebesar 17,53 MJ, suhu 45°C sebesar 19,54 MJ dan suhu 55°C sebesar 21,34 MJ. Berdasarkan hasil kalkulasi antara energi listrik dan energi thermal didapatkan efisiensi pengeringan pada suhu 35°C sebesar 27,80%, suhu 45°C sebesar 22,2% dan suhu 55°C sebesar 31,4%.Modification Of Tray Dryer With InsulatorAbstract. Tray Dryer is a type of dryer or cabinet dryer that can be used to dry various types of food raw materials. This dryer is designed with a parallel flow tray type where the hot air generated will be circulated parallel to the surface of the drying rack and work using an electric energy source. This study aims to modify the tray dryer with the addition of an insulator and determine the energy consumption of dryer dryers in turmeric drying. The test parameters of the performance test of equipment without material include temperature distribution, relative humidity and air flow velocity and for the calculation of energy consumption including the use of electrical energy, thermal energy calculation, energy drying material, energy to evaporate material water, drying efficiency, fan energy and energy loss through chimney. In testing the tray dryer dryer the temperature used is 55 ° C. The results showed that functionally and structurally the tray dryer after being modified by covering the outer walls of the drying chamber could operate well, the drying process was faster and the energy used was also less compared to before it was modified. Electric energy consumption in the tray dryer after being modified during the drying process with a temperature of 35oC for 6.5 hours amounted to 35.33 kWh (127.2 MJ), at a temperature of 45oC of 24.26 kWh (88.06 MJ) with a duration drying for 4.5 hours and a temperature of 55oC of 18.89 kWh (68.01 MJ) with a drying time of 3.5 hours, this is due to the length of drying is one of the factors causing the size of the electrical energy consumption. The consumption of thermal energy during the drying process with a temperature of 35 ° C is 17.53 MJ, a temperature of 45 ° C is 19.54 MJ and a temperature of 55 ° C is 21.34 MJ. Based on the results of calculations between electrical energy and thermal energy obtained drying efficiency at a temperature of 35 ° C at 27.80%, a temperature of 45 ° C at 22.2% and a temperature of 55 ° C at 31.4%


Author(s):  
H. T. Sabarez ◽  
S. Keuhbauch ◽  
K. Knoerzer

An ultrasonic design based on the indirect transmission of ultrasonic energy from the ultrasound emitter through to the material to be dried was investigated to assist in low temperature drying of food materials. The application of the improved design tested in this work was found to enhance the low temperature drying by shortening the overall drying time of up to 45% (i.e., lower energy consumption and may enable better retention of product quality). This offers a promising approach towards a better applicability of ultrasound in industrial operation, since no direct contact between the sample and the ultrasonic emitter is needed. Keywords: ultrasound; drying; low temperature; drying intensification 


2021 ◽  
Vol 39 (3) ◽  
pp. 755-762
Author(s):  
Ali Chitsazan ◽  
Georg Klepp ◽  
Birgit Glasmacher ◽  
Kamyar Mohammad Pour

Due to the increasing energy cost, the efficiency of the industrial dryer as the energy-intensive processes should be improved. The designer should optimize the design parameters of industrial drying equipment to achieve the minimum drying energy consumption. SST k-ω turbulence model is used to simulate a real geometry for industrial drying applications. For the optimization of the impinging round jet, the specific drying energy consumption is set as the objective function to be minimized. The jet to surface distance, jet to jet spacing, jet inlet velocity, jet angle, and surface velocity are chosen as the design parameters. The SHERPA search algorithm is used to search for the optimal point from the weighted sum of all objectives method. One correlation is developed and validated for the specific drying energy consumption. It is found that the SST k-ω turbulence model succeeded with reasonable accuracy in reproducing the experimental results. The minimum specific energy consumption correlates with high values of the jet to jet spacing, jet angle, and surface velocity and low values of the nozzle to surface distance and jet inlet velocity. The agreement in the prediction of the specific drying energy consumption between the numerical simulation and correlation is found to be reasonable and all the data points deviate from the correlation by less than 7%.


Author(s):  
Qifei Jian ◽  
Lizhong Luo ◽  
Bi Huang

An air-to-air heat pipe heat exchanger was built and tested for a domestic condenser tumble clothes dryer in this study, which can achieve better drying performance than a water-cooled type condenser tumble clothes dryer. The heat pipe heat exchanger was made asymmetrical, which can make full use of the irregular internal space without changing the original structure of the dryer. Under the same test conditions, the condenser tumble clothes dryer with the asymmetric heat pipe heat exchanger had lower final moisture content and a faster average drying rate than the water-cooled type condenser tumble clothes dryer. The average drying rate increased by 10.032% compared with the water-cooled type dryer. At the same time, it can achieve the objective of drying clothes without using water. This can save 2600–13,000 L of water for one year and reduce the cost of drying clothes. Besides, the energy consumption was investigated. More energy consumption and drying time can reach better dry results. With the increase in the hot fluid flow rate, the energy efficiency of the dryer has a decreasing trend. As the drying process progresses, the average drying rate decreases. These conclusions are helpful in optimizing domestic condenser tumble clothes dryers.


Sign in / Sign up

Export Citation Format

Share Document