scholarly journals Mechanical Calculation of Flexible Wires Taking into Account Taps to Electrical Apparatuses

Author(s):  
Y. V. Bladyko ◽  
E. G. Ponomarenko

A method is proposed for the mechanical calculation of flexible wires of substation in the presence of one tap to an electrical apparatus located in the middle of the span, taking into account its real location. The technique takes into account the presence of tension insulators strings, different heights of the suspension of wires. The loads on the conductor and tap depend on the climatic regime and take into account wind and icy conditions, as well as temperature changes. The transition to another climatic regime is performed by solving the equation of state, taking into account the coefficients of the horizontal and vertical load of the given and initial regimes. Formulas are given for calculating load factors that take into account weight, wind and ice cover loads on wires and insulator strings, as well as the slope of the span. They are calculated for each climatic mode based on the actual location of the tap to the electrical apparatus and the forces from it to the busbar. It is shown that the calculation results are in good agreement with the proposed method and the computer program. Formulas are given for calculating the sag and horizontal deviations of the wires when the tap is located in the middle of the span. A method is proposed for calculating the components of the forces on the busbar from the tap, taking into account its real location in substation. Formulas for calculating these components are given for different variants of the tap orientation. Knowledge of the values of the components of concentrated forces from the tap allows to increase the accuracy of calculating the sag and tension of the substation wires. Formulas are given for calculating the coefficients of increasing the sag, taking into account the components of the forces from the tap.

Author(s):  
Yu. V. Bladyko

The linear wind load on the wires and cables acting perpendicular to the wire depends on the angle between the direction of the wind and the axis of the overhead line. In the methodology of mechanical calculation of wires and cables, it is recommended to take the wind directed at an angle of 90° to the axis of span and it is not specified which side the wind blows from. For spans of air, this is not so much significant as for switchgear spans, where the deviations of the wires depend on the direction of action of the taps to the electrical apparatus. The article discusses various options for the location of taps and their effect on the wire, as well as changing the direction of the wind. An algorithm for calculating the horizontal deviation of a flexible wire and its increase coefficients in the presence of horizontal concentrated loads due to the action of windon spacers, barriers, taps to electrical apparatuses and other structural elements of substations and overhead lines is given. In the absence of wind, horizontal concentrated loads and deviations occur when an arrangement of the taps is non-keel. The formulas for calculating the horizontal component of the load coefficient to solve the equation of state in the presence of horizontal concentrated forces acting in any direction have been derived. The results of the mechanical calculation are obtained for the cases of one and two horizontal concentrated forces, differently oriented with respect to the distributed wind load. In design practice it is recommended to take the wind flow in the direction of the action of horizontal concentrated forces, since in this case the greatest horizontal deviations and load factors are obtained. The reduction in the coefficients of the horizontal load occurs when the current lead is unloaded because of the opposite directions of the wind and horizontal concentrated forces. In the absence of wind, it is proposed to use the formulas for calculating horizontal deviations and load after finding the product of the coefficient of increase in horizontal deviations and the horizontal component of the coefficient of load per linear load.


Author(s):  
Y. V. Bladyko

In the mechanical calculation of the flexible wires of substations and overhead lines, sags and tension are determined in various climatic conditions. Concentrated loads from spacers, barrier balls, stubs, taps to electrical apparatus and other elements are replaced with a load distributed over the span. On the example of a span with tension insulator springs, the action of concentrated loads on the wire is considered, the error is determined when the concentrated forces are replaced with a load one that is uniformly distributed along the span. It is shown that concentrated loads cannot be replaced with distributed ones by simple division of total loads by the span length, since this might result in completely incorrect findings. A relationship is established between the coefficient of the increase of the sag, the coefficient of concentrated forces, the coefficient that takes into account the presence of tension insulator springs, and the angle of inclination of the span. With wind load and the presence of taps to electrical apparatus, the deviations of the wire in two planes may be calculated independently of each other if the forces concentrated in these planes are known. A decrease in the error is shown with an increase in the number of small concentrated forces. The influence of the angle of inclination of the span and the presence of tension insulator springs on calculating the deviations of the wires of substations and overhead lines is assessed. A more accurate calculation of mechanical tensions and sags is possible with the use of a vector-parametric method for calculating the flexible bus of switchgears and wires of overhead lines, where the design model of wires in the form of a flexible elastic thread is used, taking into account the spatial disposition of all structural elements.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1373
Author(s):  
Yueh-Yu Lin ◽  
Felix Schleifer ◽  
Markus Holzinger ◽  
Na Ta ◽  
Birgit Skrotzki ◽  
...  

The effectiveness of the mechanism of precipitation strengthening in metallic alloys depends on the shapes of the precipitates. Two different material systems are considered: tetragonal γ′′ precipitates in Ni-based alloys and tetragonal θ′ precipitates in Al-Cu-alloys. The shape formation and evolution of the tetragonally misfitting precipitates was investigated by means of experiments and phase-field simulations. We employed the method of invariant moments for the consistent shape quantification of precipitates obtained from the simulation as well as those obtained from the experiment. Two well-defined shape-quantities are proposed: (i) a generalized measure for the particles aspect ratio and (ii) the normalized λ2, as a measure for shape deviations from an ideal ellipse of the given aspect ratio. Considering the size dependence of the aspect ratio of γ′′ precipitates, we find good agreement between the simulation results and the experiment. Further, the precipitates’ in-plane shape is defined as the central 2D cut through the 3D particle in a plane normal to the tetragonal c-axes of the precipitate. The experimentally observed in-plane shapes of γ′′-precipitates can be quantitatively reproduced by the phase-field model.


1984 ◽  
Vol 106 (2) ◽  
pp. 306-312
Author(s):  
S. K. Mao ◽  
D. T. Li

A streamline curvature method for calculating S1 surface flow in turbines is presented. The authors propose a simple method in which a domain of calculation can be changed into an orderly rectangle without making coordinate transformations. Calculation results obtained on subsonic and transonic turbine cascades have been compared with those of experiment and another theory. Good agreement has been found. When calculating blade-to-blade flow velocity at subsonic speed, a function approximation technique can be used in lieu of iteration method in order to reduce calculation time. If the calculated flow section is of a mixed (subsonic-supersonic) flow type, a Boolean expression obtained from the truth table of flow states is proposed to judge the integrated character of the mixed flow section. Similarly, another Boolean expression is used to determine whether there exists a “choking” of the relevant section. Periodical conditions are satisfied by iterating the first-order derivative of stagnation streamline, which is formed simultaneously. It can be proved that the stagnation streamline formed in this way is unique.


2012 ◽  
Vol 535-537 ◽  
pp. 697-700
Author(s):  
Zhong Feng Guo ◽  
Jun Hong Hu ◽  
Xue Yan Sun

Roll wear model for Hot Strip Mill (HSM) was researched and the factors affect roll wear are analyzed. The simulation program was compiled by program visual C++ language and work roll wear was calculated according to the rolling schedule. Calculation results shows that roll wear like box shape. Strip width affects roll wear clearly. The strip length is one of the important issues which affect roll wear. Work roll wear of F7 top roll middle get to 280μm after a rolling schedule. Roll wear curve calculated by program were good agreement with the wear curve got by high-precision grinder. The results show that the roll wear model has high accuracy.


2011 ◽  
Vol 287-290 ◽  
pp. 1896-1901
Author(s):  
Zhi Kun Guo ◽  
Wan Xiang Chen ◽  
Qi Fan Wang ◽  
Yu Huang ◽  
Chao Pu Li ◽  
...  

The bearing capacities of one-way reinforced concrete beams with elastic supports are investigated in this paper. According to the nonlinear characteristics of the beams, the basic equations based on plastic theory of concrete are derived by considering the in-plane force effects that aroused by the constraints of supports when the beams deforming. It is indicated that the calculation results are in good agreement with experimental datum, and the influences of different supports on the bearing capacities of the beams are quantitatively given for the first time.


2007 ◽  
Vol 546-549 ◽  
pp. 447-450
Author(s):  
Tian Mo Liu ◽  
Hong Yi Zhou ◽  
Fu Sheng Pan

In the present work Miedema model has been developed, and the formation enthalpy of Mg-Zn alloys and the activity curve of Zn in Mg-Zn alloy at 1000K have been calculated according to the Miedema model. The calculation results showed that the formation enthalpy of Mg-Zn was small, and the excess entropy attributes a lot to the result. When excess enthopy was considered, the calculation results were found to be in good agreement with the experimental values.


1975 ◽  
Vol 30 (3) ◽  
pp. 287-291 ◽  
Author(s):  
I. Gryczyński ◽  
A. Kawski

A variation of the temperature changes the static dielectric constant (ε) and the refractive index (n) of solvents and, in conjunction with the measurement of solvent shifts of absorption and fluorescence maxima, allows the investigation of dipole moment changes of solutes in the excited state. For this purpose, investigations of the temperature dependences of ε and n of some pure and mixed solvents of different polarities have been made. It is found that the excited dipole moments of indole, 1,2-dimethylindole, 2,3-dimethylindole and tryptophan obtained from the shifts of the fluorescence maxima in mixed solvents at high temperatures are in good agreement with those obtained in other ways.


2012 ◽  
Vol 226-228 ◽  
pp. 176-180
Author(s):  
Jing Zhang ◽  
Bin Zhang ◽  
Ying Hua Liu ◽  
Long Qi Wang ◽  
Yu Bin Wu

Field tests were carried out on Sihui metro depot of Beijing metro line 1 and its superstructure. The acceleration time history of sleepers and floors of the building was obtained, and the waves-propagation laws of building were studied through the tests. Test analysis shows that the structure vibrations show zigzag tendencies ascends with the height of the building. Based on current situation of Sihui metro depot, a metro-soil-building 3-dimensional finite element model is established on ANSYS. By using actual acceleration of sleepers as inputs, the dynamic responds rule of the superstructure is obtained. Compared calculation results with the experimental results, the given numerical model can predict the vibrations of the building induced by moving trains quite well. This method can provide guidance and technical support for future development of superstructure.


2021 ◽  
pp. 43-54
Author(s):  
A. N. Krutov ◽  
◽  
S. Ya. Shkol’nikov ◽  

The mathematical model of kinematic wave, that is widely used in hydrological calculations, is generalized to compute processes in deformable channels. Self-similar solutions to the kinematic wave equations, namely, the discontinuous wave of increase and the “simple” wave of decrease are generalized. A numerical method is proposed for solving the kinematic wave equations for deformable channels. The comparison of calculation results with self-similar solutions revealed a good agreement.


Sign in / Sign up

Export Citation Format

Share Document