scholarly journals Synthesis of Functionalized Silica from Rice Husks Containing C-I End Group

2019 ◽  
Vol 16 (4) ◽  
pp. 0886 ◽  
Author(s):  
Sobh Et al.

In this paper, we have extracted Silica from rice husk ash (RHA) by sodium hydroxide to produce sodium silicate. 3-(chloropropyl)triethoxysilane (CPTES) functionalized with sodium silicate via a sol-gel method in one pot synthesis to prepare RHACCl. Chloro group in compound RHACCl replacement in iodo group to prepere RHACI. The FT-IR clearly showed absorption band of C-I at 580 cm-1. Functionalized silica RHACI has high surface area (410 m2/g) and average pore diameter (3.8 nm) within mesoporous range. X-ray diffraction pattern showed that functionalized silica RHACI has amorphous phase .Thermogravemitric analysis (TGA) showed two decomposition stages and SEM morphology of RHACI showed that the particles have irregular shape. Atomic force microscope (AFM) technique was proved that the RHACI  has a nanostructure The XPS spectra of I 3d for all the studied surfaces are presented in the peak located at 618.5 eV binding energy was associated with C–I bond.

2018 ◽  
Vol 768 ◽  
pp. 218-223
Author(s):  
Juan Xia ◽  
Lin Zhang ◽  
Qi Wang

Two different Bi-based semiconductor photocatalysts Bi2MoO6 and Bi2WO6 were synthesized by a simple one-pot hydrothermal reaction at 453 K for 10 h. The properties of the photocatalysts, including structures, morphology, light-absorption band and photoluminescence, etc were characterized by X-ray diffraction, scanning electron microscopy, UV-Vis diffuse reflectance spectrum and fluorescence spectrum. Further, their photocatalytic properties were compared by the degradation of two different organic dyes: Rhodamine B and methylene blue. It is important to note that the Bi2WO6 nanoplate structure exhibited better photocatalytic activity than the Bi2MoO6 nanowires aggregates due to its high surface area, higher light absorption and lower recombination of electron-hole pairs.


2011 ◽  
Vol 471-472 ◽  
pp. 1040-1045 ◽  
Author(s):  
Samaneh Shahgaldi ◽  
Zahira Yaakob ◽  
Dariush Jafar Khadem ◽  
Wan Ramli Wan Daud ◽  
Edy Herianto Majlan

In recent years, one dimensional nanostructure, nanowires, nanofibers with unique properties have been a subject of intense research due to reduction of devise dimension, potential properties from the re-arrangement at the molecular level and high surface area. There are many methods for synthesize such as laser ablation, chemical vapour deposition, solution method micro pulling down method but all these method faced to the major disadvantages of being complicated with long wasting time and relatively high expense . The electrospinning recently used for producing ceramic, metal, and carbon nanofibers. In this report, we incorporate palladium into silica nanofibers for the first time, and the effect of doping of palladium into the silica nanofibers is investigated. The different ratio of palladium to silica and comparing with silica nanofibers is also reported. The composition, morphology, structure and surface area of silica, and silica palladium nanofibers were investigated by thermo gravimetric analysis (TGA), x-ray diffraction (XRD), scanning electron microscopy (SEM),Fourier transform infrared spectroscopy (FT-IR), and Micromeriics. To the best of our knowledge, investigation on characteristic on Silica palladium nanofibers has not been reported up to now. The result reveal that the silica nanofibers compare to silica doped with palladium have lower diameter, and also by increasing the temperature above 600 °C, the reduction in length of nanofibers happened. High surface area of silica palladium nanofibers can be one of the promising materials for hydrogen storage.


2017 ◽  
Vol 3 (1) ◽  
pp. 20-26
Author(s):  
Atik Setyani ◽  
Emas Agus Prastyo Wibowo

Nanotubes received great attention because it has a high surface area. In this study, TiO2 nanotubes fabricated via hydrothermal method from  synthesis of TiO2 nanoparticles via sol-gel method. Catalysts that have been synthesized later in the characterization by X-Ray Diffraction (XRD) to obtain the crystal size and crystallinity. Crystal size of TiO2 nanoparticles at a temperature of 450C is 13.78 nm. Then characterized by Transmission Electron Microscopy (TEM) to look at the formation of nanotubes. Characterization of TiO2 nanotubes with TEM shows that the structure of the tubes had already been formed TNTs although the growth has not been perfect. It can be seen from the structure TNTs who tend to be short and yet so irregular.DOI: http://dx.doi.org/10.15408/jkv.v0i0.5036  


1994 ◽  
Vol 371 ◽  
Author(s):  
K. B. Babb ◽  
D. A. Lindquist ◽  
S. S. Rooke ◽  
W. E. Young ◽  
M. G. Kleve

AbstractAnhydrous sol-gel condensation of triethyl phosphate [(CH3CH2O)3PO] with boron trichioride (BCl3), triethyl aluminum [(CH3CH2)3Al] or silicon tetrachloride [SiCI4] in organic solvents led to rigid gels. The pore fluid of the gels was removed under supercritical conditions in a pressurized vessel to form porous solids. The condensation chemistry prior to the gel point was monitored by solution 1H, 13C, 31P, and 11B NMR. The materials were then calcined at progressively higher temperatures to produce high surface area phosphates. Nitrogen gasphysisorption was used to determine the surface areas, total pore volume, and average pore radius of the products. FT-IR was used to determine functional groups in the materials. The microstructure was also examined by scanning electron microscopy.


2021 ◽  
Vol 10 (1) ◽  
pp. 74-78
Author(s):  
Nhan Dang Thi Thanh ◽  
Don Truong Thi ◽  
Thang Le Quoc ◽  
Tien Tran Dong ◽  
Son Le Lam

Presently, biopolymer materials have been given more attention for their outstanding properties, high efficiencies and promising applications in various fields. In this study, Fe2O3/chitosan aerogel-like spheres were successfully prepared from chitosan and FeCl3 by sol–gel process and freeze-drying to provide high-surface area materials. The factors affecting the material synthesis have been studied. The asprepared Fe2O3/chitosan material was characterized by Infrared Spectroscopy (IR), X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM) methods. The results showed that the aerogel spheres have a hollow structure made of chitosan nanofibril networks. Fe2O3 nanoparticles get high crystallinity and have an average particle size of 33 nm.


2014 ◽  
Vol 633 ◽  
pp. 336-339
Author(s):  
Zhao Kui Jin ◽  
Xiong Peng ◽  
Hong Yi Gao ◽  
Chao Hao Peng ◽  
Yi Luan

A novel silica aerogel insulation composite was prepared by using TiO2 nanowires as modifier via sol-gel processing and supercritical drying methods in order to address issues of the poor mechanical and the infrared shading performance of silica aerogel. The effects of TiO2 nanowire content on the mechanical and adiabatic performance were investigated by X-Ray diffraction (XRD), nitrogen adsorption (BET), field emission scanning electron microscopy (FESEM), static compression test and thermal analysis. The results show that TiO2 nanowire reinforced aerogels had great thermal insulation properties, while high surface area, low density and mechanical strength were retained.


2018 ◽  
Vol 9 ◽  
pp. 1715-1727 ◽  
Author(s):  
Jong Tae Moon ◽  
Seung Ki Lee ◽  
Ji Bong Joo

This study reports on the controllable synthesis of uniform colloidal titanium dioxide (TiO2) particles and their photocatalytic applications toward rhodamine B (RhB) degradation. The monodispersed TiO2 particles were synthesized under mixed solvent conditions by sol–gel chemistry in a one-pot process. Varying the ratio of solvent composition, the concentration of surfactant and TiO2 precursor was used to control the particle diameter, degree of monodispersity and morphology. The modification of the calcination temperature affected the crystallinity and crystalline phase of the colloidal TiO2 particles. When uniform, amorphous TiO2 particles were calcined at an optimal temperature (500 °C), the final sample exhibited beneficial characteristics such as high anatase crystallinity with a mixed phase of anatase and rutile and relatively high surface area. The photocatalytic efficiency of the uniform TiO2 sample with high anatase crystallinity with mixed phase and high surface area was dramatically enhanced towards RhB degradation under UV–vis irradiation. We systemically discuss the relationship between the synthetic parameters in our synthesis and the properties of the final TiO2 products, as well as the crystalline properties and performance enhancement of TiO2 photocatalysts calcined at different temperatures.


2010 ◽  
Vol 93 (12) ◽  
pp. 4047-4052 ◽  
Author(s):  
Padmaja Parameswaran Nampi ◽  
Padmanabhan Moothetty ◽  
Wilfried Wunderlich ◽  
Frank John Berry ◽  
Michael Mortimer ◽  
...  

2018 ◽  
Vol 29 (7) ◽  
pp. 075702 ◽  
Author(s):  
Feng Qingge ◽  
Cai Huidong ◽  
Lin Haiying ◽  
Qin Siying ◽  
Liu Zheng ◽  
...  

2017 ◽  
Vol 75 (10) ◽  
pp. 2403-2411 ◽  
Author(s):  
Zongxue Yu ◽  
Qi Chen ◽  
Liang Lv ◽  
Yang Pan ◽  
Guangyong Zeng ◽  
...  

The environmental applications of graphene oxide and β-cyclodextrin (β-CD) have attracted great attention since their first discovery. Novel nanocomposites were successfully prepared by using an esterification reaction between β-cyclodextrin/γ-(2,3-epoxypropoxy) propyl trimethoxysilane grafted graphene oxide (β-CD/GPTMS/GO). The β-CD/GPTMS/GO nanocomposites were used to remove the Cu2+ from aqueous solutions. The characteristics of β-CD/GPTMS/GO were detected by scanning electron microscopy (SEM), Fourier transform infrared, X-ray diffraction (XRD), thermogravimetric analysis (TG) and energy dispersive X-ray (EDX). The dispersibility of graphene oxide was excellent due to the addition of β-CD. The adsorption isotherms data obtained at the optimum pH 7 were fitted by Langmuir isotherm model. The excellent adsorption properties of β-CD/GPTMS/GO for Cu2+ ions could be attributed to the apolar cavity structure of β-CD, the high surface area and abundant functional groups on the surface of GO. The adsorption patterns of β-CD/GPTMS/GO were electrostatic attraction, formation of host-guest inclusion complexes and the ion exchange adsorption. The efficient adsorption of β-CD/GPTMS/GO for Cu2+ ions suggested that these novel nanocomposites may be ideal candidates for removing other cation pollutants from waste water.


Sign in / Sign up

Export Citation Format

Share Document