Wave Field Characteristics of Small Faults around the Loose Circle of Rock Surrounding a Coal Roadway

2020 ◽  
Vol 25 (2) ◽  
pp. 245-254 ◽  
Author(s):  
Bo Wang ◽  
Huachao Sun ◽  
Lanying Huang ◽  
Shengdong Liu ◽  
Biao Jin ◽  
...  

The geological conditions of coal roadway excavation are complicated. Seismic advanced detection is strongly influenced by the loose circle of fractured rock surrounding the competent coal seam. However, the three-dimensional wave field characteristics of small fault advanced detection in the condition of the loose circle of coal roadway have not examined. In this paper, numerical modeling and field tests were conducted to address this knowledge gap. The results indicate that when a seismic source near the tunnel face is excited, the body waves and a Love channel wave propagate in the tunneling direction toward the small fault, then produces reflected body waves whose amplitude is relatively weak, and a reflected Love channel wave whose amplitude is relatively strong. When reflected body waves and the reflected Love channel wave enter the loose circle of surrounding rock, the former's signal is unrecognizable in seismic record; but the latter converts to a Love wave whose amplitude is strong in the loose circle of coal seam. The Love wave which has a large interval from other wave trains in the time domain is easily recognizable in seismic record, which makes it suitable for advanced detection of small fault. The signal-to-noise ratio of seismic record of X component is higher than those of Y component and Z component.

2017 ◽  
Vol 21 (2) ◽  
pp. 95-99 ◽  
Author(s):  
Bo Wang ◽  
Shengdong Liu ◽  
Fubao Zhou ◽  
Jun Zhang ◽  
Fangkun Zheng

Small fault ahead of the tunnel face in coal roadway is the important hidden hazard factor of coal and gas outburst accidents. The study of small fault prediction has important practical significance, which is the urgent demand of coal mine safety production. The diffraction of breakpoint can be used to identify the fault. However, unlike surface seismic exploration, the diffraction is with approximately horizontal incidence when the advanced detection is carried out in the roadway. The common advanced detection system is mainly as the reference of traffic tunnel, without considering the influence of low-velocity coal seam. Considering the influence of an acoustic wave of the roadway cavity and channel wave of the coal seam, the advanced detection model of small fault ahead of tunnel face is established. Diffraction advanced observation system in which sources located in front of tunnel face is constructed, and the numerical calculation of the high-order staggered-grid finite difference is carried out. The simulation results show that: Compared with the data collected by reflection observation system, in seismic records acquired by diffraction observation system, the suppression effect of acoustic wave is appeared. The diffracted P-wave of the breakpoint of component X is clear with strong energy and short-wave group. Multiple diffractions of the breakpoint are not found, but the multiple diffraction of tunnel face endpoint is obvious. The difference between breakpoint diffraction and multiple diffractions of the endpoint is clear, and diffracted P-wave of the breakpoint is easy to identify. The multiple reflected channel wave between the fault and the tunnel face is very obvious, and the reflected channel wave of small fault is so hard to identify. Migration results show that the imaging resolution of diffracted P-wave of small fault is higher than the reflected channel wave, and breakpoint location of imaging is consistent with the actual model.


2011 ◽  
Vol 393-395 ◽  
pp. 935-938
Author(s):  
Yi Chen Zhao ◽  
Hui Wang ◽  
Yan Sun

This paper uses the finite element simulation system of the anisotropic elastic wave to simulate the two component wave field characteristics of the HTI medium in the coal-seam with fractures. The simulation results of the single shot record indicate that when the coal-seam contains fracture. The wave field characteristics under different fracture parameters are observed through the single shot record. The influences can be found mainly in the energy and amplitude vers offset characteristics. The characteristics of x component and z component are different. This may provide some experimental references to fracture detection using the PS-wave.


Biology ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 672
Author(s):  
Bruce A. Young ◽  
Skye Greer ◽  
Michael Cramberg

In the viper boa (Candoia aspera), the cerebrospinal fluid (CSF) shows two stable overlapping patterns of pulsations: low-frequency (0.08 Hz) pulses with a mean amplitude of 4.1 mmHg that correspond to the ventilatory cycle, and higher-frequency (0.66 Hz) pulses with a mean amplitude of 1.2 mmHg that correspond to the cardiac cycle. Manual oscillations of anesthetized C. aspera induced propagating sinusoidal body waves. These waves resulted in a different pattern of CSF pulsations with frequencies corresponding to the displacement frequency of the body and with amplitudes greater than those of the cardiac or ventilatory cycles. After recovery from anesthesia, the snakes moved independently using lateral undulation and concertina locomotion. The episodes of lateral undulation produced similar influences on the CSF pressure as were observed during the manual oscillations, though the induced CSF pulsations were of lower amplitude during lateral undulation. No impact on the CSF was found while C. aspera was performing concertina locomotion. The relationship between the propagation of the body and the CSF pulsations suggests that the body movements produce an impulse on the spinal CSF.


2013 ◽  
Vol 295-298 ◽  
pp. 2980-2984
Author(s):  
Xiang Qian Wang ◽  
Da Fa Yin ◽  
Zhao Ning Gao ◽  
Qi Feng Zhao

Based on the geological conditions of 6# coal seam and 8# coal seam in Xieqiao Coal Mine, to determine reasonable entry layout of lower seam in multi-seam mining, alternate internal entry layout, alternate exterior entry layout and overlapping entry layout were put forward and simulated by FLAC3D. Then stress distribution and displacement characteristics of surrounding rock were analyzed in the three ways of entry layout, leading to the conclusion that alternate internal entry layout is a better choice for multi-seam mining, for which makes the entry located in stress reduce zone and reduces the influence of abutment pressure of upper coal seam mining to a certain extent,. And the mining practice of Xieqiao Coal Mine tested the results, which will offer a beneficial reference for entry layout with similar geological conditions in multi-seam mining.


2012 ◽  
Vol 594-597 ◽  
pp. 1338-1342
Author(s):  
Qing Hai Li ◽  
Ren Shu Yang ◽  
Wei Ping Shi

In first mine of Chagannaoer, 2# coal seam, the mainly mined out layer, was 22.00m thickness in average. In order to meet the requirements of production ability, the mine was planned to apply mining technology of fully mechanized caving. Good or bad of top coal’s caving was an important prerequisite which decided the mining technology of top coal caving could be chosen or not. Due to lack of producing mines in this region and no experience to refer, we simulated the mining process of 2# coal seam using numerical software of FLAC3D, and gained evolution laws of stress and displacement of top coal and overlying strata and expansion laws of plastic zone. Through analysis, we got that the top coal damaged seriously and the top coal could be caved smoothly. Relying on the geological conditions of site, we verified the simulated results with method of fuzzy comprehensive evaluation. Combined with the research results, we decided that 2# coal seam’s caving was better and was convenient for top coal caving, so it was suitable for caving mining in 2# coal seam in first mine of Chagannaoer.


2004 ◽  
Vol 41 (5) ◽  
pp. 796-813 ◽  
Author(s):  
Anne-Marie LeBlanc ◽  
Richard Fortier ◽  
Michel Allard ◽  
Calin Cosma ◽  
Sylvie Buteau

Two high-resolution multi-offset vertical seismic profile (VSP) surveys were carried out in a permafrost mound near Umiujaq in northern Quebec, Canada, while performing seismic cone penetration tests (SCPT) to study the cryostratigraphy and assess the body waves velocities and the dynamic properties of warm permafrost. Penetrometer-mounted triaxial accelerometers were used as the VSP receivers, and a swept impact seismic technique (SIST) source generating both compressional and shear waves was moved near the surface following a cross configuration of 40 seismic shot-point locations surrounding each of the two SCPTs. The inversion of travel times based on a simultaneous iterative reconstruction technique (SIRT) provided tomographic images of the distribution of seismic velocities in permafrost. The Young's and shear moduli at low strains were then calculated from the seismic velocities and the permafrost density measured on core samples. The combination of multi-offset VSP survey, SCPT, SIST, and SIRT for tomographic imaging led to new insights in the dynamic properties of permafrost at temperatures close to 0 °C. The P- and S-wave velocities in permafrost vary from 2400 to 3200 m/s and from 900 to 1750 m/s, respectively, for a temperature range between –0.2 and –2.0 °C. The Young's modulus varies from 2.15 to 13.65 GPa, and the shear modulus varies from 1.00 to 4.75 GPa over the same range of temperature.Key words: permafrost, seismic cone penetration test, vertical seismic profiling, seismic tomography, dynamic properties.


1982 ◽  
Vol 72 (4) ◽  
pp. 1049-1068
Author(s):  
John Boatwright

abstract A model for the far-field acceleration radiated by an incoherent rupture is constructed by combining Madariaga's (1977) theory for the high-frequency radiation from crack models of faulting with a simple statistical source model. By extending Madariaga's results to acceleration pulses with finite durations, the peak acceleration of a pulse radiated by a single stop or start of a crack tip is shown to depend on the dynamic stress drop of the subevent, the total change in rupture velocity, and the ratio of the subevent radius to the acceleration pulse width. An incoherent rupture is approximated by a sample from a self-similar distribution of coherent subevents. Assuming the subevents fit together without overlapping, the high-frequency level of the acceleration spectra depends linearly on the rms dynamic stress drop, the average change in rupture velocity, and the square root of the overall rupture area. The high-frequency level is independent, to first order, of the rupture complexity. Following Hanks (1979), simple approximations are derived for the relation between the rms dynamic stress drop and the rms acceleration, averaged over the pulse duration. This relation necessarily depends on the shape of the body-wave spectra. The body waves radiated by 10 small earthquakes near Monticello Dam, South Carolina, are analyzed to test these results. The average change of rupture velocity of Δv = 0.8β associated with the radiation of the acceleration pulses is estimated by comparing the rms acceleration contained in the P waves to that in the S waves. The rms dynamic stress drops of the 10 events, estimated from the rms accelerations, range from 0.4 to 1.9 bars and are strongly correlated with estimates of the apparent stress.


1963 ◽  
Vol 53 (5) ◽  
pp. 955-963
Author(s):  
Henry N. Pollack

Abstract The motion near a seismic source is synthesized from experimentally obtained seismograms of non-dispersed body waves. The body waves were emitted from an explosive source submerged in a lake with a frozen surface. The seismograms were recorded at several distances by moving the source to a greater depth for each record, while the seismometer remained in a fixed position on the surface ice sheet. All syntheses of the waveform one meter from the source yield the impulsive nature of the source. Deviations between the synthesized one-meter record and the observed one-meter motion are thought to reflect primarily the changing character of the shot medium with depth from the ice. These results indicate that over the short propagation distances (about three wavelengths for the higher frequencies recorded) through the simple medium of this experiment, the observed waveforms and their associated spectra retain characteristics of the source function. The records also yield some information regarding the nature and structure of the elastic medium about the source.


1982 ◽  
Vol 72 (2) ◽  
pp. 439-456
Author(s):  
Thorne Lay ◽  
Jeffrey W. Given ◽  
Hiroo Kanamori

Abstract The seismic moment and source orientation of the 8 November 1980 Eureka, California, earthquake (Ms = 7.2) are determined using long-period surface and body wave data obtained from the SRO, ASRO, and IDA networks. The favorable azimuthal distribution of the recording stations allows a well-constrained mechanism to be determined by a simultaneous moment tensor inversion of the Love and Rayleigh wave observations. The shallow depth of the event precludes determination of the full moment tensor, but constraining Mzx = Mzy = 0 and using a point source at 16-km depth gives a major double couple for period T = 256 sec with scalar moment M0 = 1.1 · 1027 dyne-cm and a left-lateral vertical strike-slip orientation trending N48.2°E. The choice of fault planes is made on the basis of the aftershock distribution. This solution is insensitive to the depth of the point source for depths less than 33 km. Using the moment tensor solution as a starting model, the Rayleigh and Love wave amplitude data alone are inverted in order to fine-tune the solution. This results in a slightly larger scalar moment of 1.28 · 1027 dyne-cm, but insignificant (<5°) changes in strike and dip. The rake is not well enough resolved to indicate significant variation from the pure strike-slip solution. Additional amplitude inversions of the surface waves at periods ranging from 75 to 512 sec yield a moment estimate of 1.3 ± 0.2 · 1027 dyne-cm, and a similar strike-slip fault orientation. The long-period P and SH waves recorded at SRO and ASRO stations are utilized to determine the seismic moment for 15- to 30-sec periods. A deconvolution algorithm developed by Kikuchi and Kanamori (1982) is used to determine the time function for the first 180 sec of the P and SH signals. The SH data are more stable and indicate a complex bilateral rupture with at least four subevents. The dominant first subevent has a moment of 6.4 · 1026 dyne-cm. Summing the moment of this and the next three subevents, all of which occur in the first 80 sec of rupture, yields a moment of 1.3 · 1027 dyne-cm. Thus, when the multiple source character of the body waves is taken into account, the seismic moment for the Eureka event throughout the period range 15 to 500 sec is 1.3 ± 0.2 · 1027 dyne-cm.


1979 ◽  
Vol 23 (01) ◽  
pp. 20-31
Author(s):  
R. B. Chapman

A numerical method is presented for solving the transient two-dimensional flow induced by the motion of a floating body. The free-surface equations are linearized, but an exact body boundary condition permits large-amplitude motion of the body. The flow is divided into two parts: the wave field and the impulsive flow required to satisfy the instantaneous body boundary condition. The wave field is represented by a finite sum of harmonics. A nonuniform spacing of the harmonic components gives an efficient representation over specified time and space intervals. The body is represented by a source distribution over the portion of its surface under the static waterline. Two modes of body motion are discussed—a captive mode and a free mode. In the former case, the body motion is specified, and in the latter, it is calculated from the initial conditions and the inertial properties of the body. Two examples are given—water entry of a wedge in the captive mode and motion of a perturbed floating body in the free mode.


Sign in / Sign up

Export Citation Format

Share Document