Measurement and Modeling of Minimum Miscibility Pressure: A State-of-the-Art Review

2021 ◽  
pp. 1-23
Author(s):  
Birol Dindoruk ◽  
Russell Johns ◽  
Franklin M. Orr

Summary This paper gives a critical review of miscibility-measurement techniques published in the open literature along with recommendations and lessons learned. Many of these published methods violate the inherent assumptions for multicontact miscibility (MCM). The confusion often arises from a failure to distinguish between first-contact miscibility (FCM), in which two fluids can be mixed in all proportions without forming two phases, and MCM, in which fluid compositions that arise during the flow of two phases in a porous medium approach a specific critical point within the constraints of the MCM definition. There are many analytical, numerical, correlational, and experimental methods available to estimate the minimum miscibility pressure (MMP) for MCM flow. The numerous available methods, some of which are quite inexpensive, have caused significant misunderstandings in the literature and in practice regarding their ability to estimate MMP. Our experience has shown that the best methods are those that honor the multicontact process (MCM), in which flow interacts with phase behavior in a prescribed way. Good methods that achieve this are slimtube experiments, detailed slimtube simulations, multiple-mixing-cell calculation methods, and the method of characteristics (MOC). Techniques such as the rising-bubble-apparatus (RBA) and vanishing-interfacial-tension (IFT) (VIT) experiments are subject to significant uncertainties, although they can still provide useful information. Numerous MMP correlations have been developed. They should be used with caution for systems similar to those used to develop the correlation. Use for other fluid systems can lead to significant errors. We discuss the advantages and disadvantages of most current methods and show that various combinations of methods can reduce uncertainty.

2019 ◽  
Vol 28 (04) ◽  
pp. 1930005 ◽  
Author(s):  
Michael A. Famiano

Nuclear masses are the most fundamental of all nuclear properties, yet they can provide a wealth of knowledge, including information on astrophysical sites, constraints on existing theory, and fundamental symmetries. In nearly all applications, it is necessary to measure nuclear masses with very high precision. As mass measurements push to more short-lived and more massive nuclei, the practical constraints on mass measurement techniques become more exacting. Various techniques used to measure nuclear masses, including their advantages and disadvantages are described. Descriptions of some of the world facilities at which the nuclear mass measurements are performed are given, and brief summaries of planned facilities are presented. Future directions are mentioned, and conclusions are presented which provide a possible outlook and emphasis on upcoming plans for nuclear mass measurements at existing facilities, those under construction, and those being planned.


2016 ◽  
Vol 120 (1234) ◽  
pp. 1917-1931 ◽  
Author(s):  
J. Bakunowicz ◽  
R. Meyer

ABSTRACTFlight testing is both vital for collecting data for aeronautic research and at the same time fascinating for its contributors. Taking a glider as a versatile test bed example, this paper presents a transnational measurement campaign within the framework of a collaborative project funded by the European Commission. This project Advanced In-Flight Measurement Techniques 2 (AIM²) is a follow-up of Advanced In-Flight Measurement Techniques (AIM) and dedicated to developing and enhancing promising optical metrology for various flight test applications up to an industrial level.The Image Pattern Correlation Technique (IPCT) and infrared thermography (IRT) are two of these modern non-intrusive measurement methods that were further developed and applied to the glider test bed within the scope of AIM². Focusing on optical deformation measurements with IPCT the experimental setup, the flight testing and results are summarily discussed. Gliders are not commonly used flight test platforms, which is why this contribution concludes with some lessons learned in general and especially related to the presented application. The experience to be shared with the flight testing community addresses equipment preparation, data collection and processing as well as how to meet official requirements and perform test flight operations in a dense controlled airspace.


2021 ◽  
Author(s):  
Abdullah Abu-Eida ◽  
Salem Al-Sabea ◽  
Milan Patra ◽  
Bader Akbar ◽  
Kutbuddin Bhatia ◽  
...  

Abstract The Minagish field in West Kuwait is a high potential field which poses several challenges in terms of hydrocarbon flow assurance through highly depleted tight carbonate intervals with uneven reservoir quality and curtailed mobility. These conditions have shifted the field development from vertical to horizontal wellbore completions. Achieving complete wellbore coverage is a challenge for any frac treatment performed in a long openhole lateral with disparities in reservoir characteristics. The fluid will flow into the path of least resistance leaving large portions of the formation untreated. As a result, economic fracturing treatment options dwindle significantly, thus reservoir stimulation results are not always optimum. A multistage fracturing technique using Integrated Dynamic Diversion (IDD) has been performed first time in West Kuwait field well. The process uses active fluid energy to divert flow into a specific fracture point in the lateral, which can initiate and precisely place a fracture. The process uses two self-directed fluid streams: one inside the pipe and one in the annulus. The process mixes the two fluids downhole with high energy to form a consistent controllable mixture. The technique includes pinpoint fluid jetting at the point of interest, followed by in-situ HCL based crosslinked systems employed for improving individual stage targets. The IDD diversion shifts the fracture to unstimulated areas to create complex fractures which increases reservoir contact volume and improved overall conductivity in the lateral. The kinetic and chemical diversion of the IDD methodology is highly critical to control fluid loss in depleted intervals and results in enhanced stimulation. Pumping a frac treatment in openhole without control would tend to initiate a longitudinal fracture along the wellbore and may restrict productivity. By using specialized completion tools with nozzles at the end of the treating string, a new pinpoint process has been employed to initiate a transverse fracture plane in IDD applications. Proper candidate selection and fluid combination with in-situ crosslink acid effectively plug the fracture generated previously and generate pressure high enough to initiate another fracture for further ramification. By combining these processes into one continuous operation, the use of wireline/coiled tubing for jetting, plug setting and milling is eliminated, making the new multistage completion technology economical for these depleted wells. The application of the IDD methodology is a fit-for-purpose solution to address the unique challenges of openhole operations, formation technical difficulties, high-stakes economics, and untapped high potential from intermittent reservoirs. The paper will present post-operation results of this completion from all fractured zones along the lateral and will describe the lessons learned in implementation of this methodology which can be considered as best practice for application in similar challenges in other fields.


SPE Journal ◽  
2020 ◽  
Vol 25 (06) ◽  
pp. 2867-2880
Author(s):  
Ram R. Ratnakar ◽  
Edward J. Lewis ◽  
Birol Dindoruk

Summary Acoustic velocity is one of the key thermodynamic properties that can supplement phase behavior or pressure/volume/temperature (PVT) measurements of pure substances and mixtures. Several important fluid properties are relatively difficult to obtain through traditional measurement techniques, correlations, or equation of state (EOS) models. Acoustic measurements offer a simpler method to obtain some of these properties. In this work, we used an experimental method based on ultrasonic pulse-echo measurements in a high-pressure/high-temperature (HP/HT) cell to estimate acoustic velocity in fluid mixtures. We used this technique to estimate related key PVT parameters (such as compressibility), thereby bridging gaps in essential data. In particular, the effect of dilution with methane (CH4) and carbon dioxide (CO2) at pressures from 15 to 62 MPa and temperatures from 313 to 344 K is studied for two reservoir fluid systems to capture the effect of the gas/oil ratio (GOR) and density variations on measured viscosity and acoustic velocity. Correlative analysis of the acoustic velocity and viscosity data were then performed to develop an empirical correlation that is a function of GOR. Such a correlation can be useful for improving the interpretation of the sonic velocity response and the calibration of viscosity changes when areal fluid properties vary with GOR, especially in disequilibrium systems. In addition, under isothermal conditions, the acoustic velocity of a live oil decreases monotonically with decreasing pressure until the saturation point where the trend is reversed. This observation can also be used as a technique to estimate the saturation pressure of a live oil or as a byproduct of the target experiments. It supplements the classical pressure/volume measurements to determine the bubblepoint pressure.


2019 ◽  
Vol 27 (3) ◽  
pp. 241-248 ◽  
Author(s):  
Carolyn Steele Gray ◽  
James Shaw

Purpose Models of integrated care are prime examples of complex interventions, incorporating multiple interacting components that work through varying mechanisms to impact numerous outcomes. The purpose of this paper is to explore summative, process and developmental approaches to evaluating complex interventions to determine how to best test this mess. Design/methodology/approach This viewpoint draws on the evaluation and complex intervention literatures to describe the advantages and disadvantages of different methods. The evaluation of the electronic patient reported outcomes (ePRO) mobile application and portal system is presented as an example of how to evaluate complex interventions with critical lessons learned from this ongoing study. Findings Although favored in the literature, summative and process evaluations rest on two problematic assumptions: it is possible to clearly identify stable mechanisms of action; and intervention fidelity can be maximized in order to control for contextual influences. Complex interventions continually adapt to local contexts, making stability and fidelity unlikely. Developmental evaluation, which is more conceptually aligned with service-design thinking, moves beyond these assumptions, emphasizing supportive adaptation to ensure meaningful adoption. Research limitations/implications Blended approaches that incorporate service-design thinking and rely more heavily on developmental strategies are essential for complex interventions. To maximize the benefit of this approach, three guiding principles are suggested: stress pragmatism over stringency; adopt an implementation lens; and use multi-disciplinary teams to run studies. Originality/value This viewpoint offers novel thinking on the debate around appropriate evaluation methodologies to be applied to complex interventions like models of integrated care.


Author(s):  
Jesús Sánchez Cuadrado ◽  
Javier Luis Cánovas Izquierdo ◽  
Jesús García Molina

Domain Specific Languages (DSL) are becoming increasingly more important with the emergence of Model-Driven paradigms. Most literature on DSLs is focused on describing particular languages, and there is still a lack of works that compare different approaches or carry out empirical studies regarding the construction or usage of DSLs. Several design choices must be made when building a DSL, but one important question is whether the DSL will be external or internal, since this affects the other aspects of the language. This chapter aims to provide developers confronting the internal-external dichotomy with guidance, through a comparison of the RubyTL and Gra2MoL model transformations languages, which have been built as an internal DSL and an external DSL, respectively. Both languages will first be introduced, and certain implementation issues will be discussed. The two languages will then be compared, and the advantages and disadvantages of each approach will be shown. Finally, some of the lessons learned will be presented.


Author(s):  
TG Harrison ◽  
AJ Shaw ◽  
KL Shallcross ◽  
SJ Williams ◽  
DE Shallcross

Spectroscopy covers a wide range of analytical techniques, a small sub-set of which UK pre-university chemistry students are required to study. The expense of such equipment means that it is not available to the vast majority of schools whilst it is commonplace in university chemistry departments. This article discusses the evolution of the Bristol ChemLabS spectroscopy outreach activities. The advantages and disadvantages of this method of engagement for both the participants and the providers are discussed from 10 years of activity.


2021 ◽  
Author(s):  
Majed Nahed Alrabeh ◽  
Zulkiflie Bin Samsudine ◽  
Salvador Alejandro Ruvalcaba Velarde ◽  
Faisal Mohammed Alhajri

Abstract The objective of this paper is to present the findings obtained from a detailed engineering evaluation resulting from trial testing two state-of-the-art surface horizontal pumping systems (HPS's) in two water supply wells. The two horizontal pumping systems were deployed as an alternative to downhole electrical submersible pumps (ESPs) to provide the benefits of eliminating ESP workover costs, modularity regarding wellsite deployments, and enhanced maintenance operations. For this trial test evaluation method, two HPS's were deployed to boost water production to the water injection plant (WIP). To ensure a thorough evaluation, the trial test well candidates were designed to accommodate both a subsurface ESP as well as a surface HPS to provide an accurate comparison, and representation, between the different artificial lift methods. The trial test and comparison method described in this paper focused primarily on the following items; maintenance and well intervention requirements, evaluation of operational availability, including potential for cavitation and effects of interference, maximum production rates, as well as root cause engineering evaluations for mechanical seals and cooling unit auxiliary motors. Various best practices and mitigation measures were identified and are presented in this paper. With regard to the results, it was observed that each artificial lift method comprised a set of advantages and disadvantages. The decision on which type of technology to use can be dependent on several factors. Overall, the HPS's demonstrated the ability to supply water production to the WIP. The HPS did experience operational challenges in providing higher production requirements. Additional challenges were also observed in the sealing mechanism as well as the auxiliary cooling unit. Precautionary pump tripping automated protocols were taken to prevent pump cavitation due to sub-optimal intake pressure resulting from possible interference. The HPS, unlike the ESPs, did not require any workover as it is located at the wellsite and therefore resulted in substantial cost savings and was easy to maintain due to its surface application. In summary, this paper adds a new and very beneficial evaluation of HPS's, and highlights best practices and lessons learned to the existing body of literature. The new information discussed in this paper is highly beneficial to engineering selections of artificial lift methods and to the successful implementation of HPS's in the industry.


1983 ◽  
pp. 75-132
Author(s):  
A. F. Clark

Abstract Specific heat and thermal expansion are closely related. Following a discussion on thermal expansion theory, methods of measurement techniques are presented along with their advantages and disadvantages. The results of the measurements are then summarized for three classes of materials: metallics, nonmetallics, and composites. Because predicting thermal expansion values for unmeasured or novel materials is useful, the chapter also describes the means of making educated guesses for low-temperature values. A short discussion on how thermal expansion data can be used is followed by a section describing where such data can be found.


Urban Science ◽  
2020 ◽  
Vol 4 (2) ◽  
pp. 27
Author(s):  
Kerry A. Nice ◽  
Jason Thompson ◽  
Jasper S. Wijnands ◽  
Gideon D. P. A. Aschwanden ◽  
Mark Stevenson

Urban typologies allow areas to be categorised according to form and the social, demographic, and political uses of the areas. The use of these typologies and finding similarities and dissimilarities between cities enables better targeted interventions for improved health, transport, and environmental outcomes in urban areas. A better understanding of local contexts can also assist in applying lessons learned from other cities. Constructing urban typologies at a global scale through traditional methods, such as functional or network analysis, requires the collection of data across multiple political districts, which can be inconsistent and then require a level of subjective classification. To overcome these limitations, we use neural networks to analyse millions of images of urban form (consisting of street view, satellite imagery, and street maps) to find shared characteristics between the largest 1692 cities in the world. The comparison city of Paris is used as an exemplar and we perform a case study using two Australian cities, Melbourne and Sydney, to determine if a “Paris-end” of town exists or can be found in these cities using these three big data imagery sets. The results show specific advantages and disadvantages of each type of imagery in constructing urban typologies. Neural networks trained with map imagery will be highly influenced by the structural mix of roads, public transport, and green and blue space. Satellite imagery captures a combination of both urban form and decorative and natural details. The use of street view imagery emphasises the features of a human-scaled visual geography of streetscapes. However, for both satellite and street view imagery to be highly effective, a reduction in scale and more aggressive pre-processing might be required in order to reduce detail and create greater abstraction in the imagery.


Sign in / Sign up

Export Citation Format

Share Document