First Deployment of Motorized Casing Reamer Shoe in Abu Dhabi Offshore

2021 ◽  
Author(s):  
Hanifan Mayo Biyanni ◽  
Suhail Mohammed Al Ameri ◽  
Erwan Couzigou ◽  
Prashant Gohel ◽  
Adelson Jose Calleia De Barros ◽  
...  

Abstract The paper will describe a novel approach of deploying casing through a problematic open hole. It involves a drillable hydraulic motorized casing reamer shoe that can rotate freely without aid of pumping, but once resistance is encountered, pump pressure can then be applied to engage the drive mechanism inside the tool. Thus it will turn into a high-speed reaming shoe that delivers sufficient reaming action. A market research was done to find a quick intermediate solution to tackle difficulty in deploying casing down to section TD. A turbine based motorized reamer shoe was then selected to encounter the challenge with some risk mitigation in place. The first deployment was run in the well where it was identified as a challenging well context and had experienced casing being held up in the first run. Despite the fact that a wiper trip has smoothened the hole condition, the parameters that were captured during the running, the finger printing, the cementing job, and the drilling out of the shoe had ticked some boxes to evaluate the suitability of the technology implementation in the field. Moreover, the lessons learned from the first run itself has also led to further testing and modification of the tool design/setup itself. The detailed analysis and operation feedback from casing running job and subsequent operation will be beneficial to provide other operators in assessing the minimum requirement and suitability of this technology utilization to overcome the drilling challenge.

Author(s):  
Denys Rozumnyi ◽  
Jan Kotera ◽  
Filip Šroubek ◽  
Jiří Matas

AbstractObjects moving at high speed along complex trajectories often appear in videos, especially videos of sports. Such objects travel a considerable distance during exposure time of a single frame, and therefore, their position in the frame is not well defined. They appear as semi-transparent streaks due to the motion blur and cannot be reliably tracked by general trackers. We propose a novel approach called Tracking by Deblatting based on the observation that motion blur is directly related to the intra-frame trajectory of an object. Blur is estimated by solving two intertwined inverse problems, blind deblurring and image matting, which we call deblatting. By postprocessing, non-causal Tracking by Deblatting estimates continuous, complete, and accurate object trajectories for the whole sequence. Tracked objects are precisely localized with higher temporal resolution than by conventional trackers. Energy minimization by dynamic programming is used to detect abrupt changes of motion, called bounces. High-order polynomials are then fitted to smooth trajectory segments between bounces. The output is a continuous trajectory function that assigns location for every real-valued time stamp from zero to the number of frames. The proposed algorithm was evaluated on a newly created dataset of videos from a high-speed camera using a novel Trajectory-IoU metric that generalizes the traditional Intersection over Union and measures the accuracy of the intra-frame trajectory. The proposed method outperforms the baselines both in recall and trajectory accuracy. Additionally, we show that from the trajectory function precise physical calculations are possible, such as radius, gravity, and sub-frame object velocity. Velocity estimation is compared to the high-speed camera measurements and radars. Results show high performance of the proposed method in terms of Trajectory-IoU, recall, and velocity estimation.


2020 ◽  
pp. 1-24
Author(s):  
Jona Razzaque ◽  
Claire Lester

Abstract Sites of ancient woodland in the United Kingdom (UK) are diminishing rapidly and the multifunctional forest management system with its fragmented approach fails effectively to protect such woodland. In the face of reports on the destruction of ancient woodland, the HS2 High-Speed train project in the UK signifies the extent of trade-offs among the key stakeholders. Such large infrastructure projects typically come with high environmental and social costs, including deforestation, habitat fragmentation, biodiversity loss, and social disruption. This article examines the protection of ancient woodland in the UK and assesses the challenges in applying the ecosystem approach, an internationally recognized sustainability strategy, in the context of such protection. A better understanding of the ecosystem approach to manage ancient woodland is critical for promoting sustainable forestry practices in the UK and informs the discussion in this article of the importance of conserving ancient woodland globally. Lessons learned from UK woodland policies and certification schemes include the need to have in place strong regulatory frameworks, introduce clear indicators, and recognize pluralistic value systems alongside economic considerations. The article concludes that the protection of ancient woodland in the UK requires distinct and strong laws that reflect multiple values of this resource, acknowledge the trade-offs among stakeholders, and adopt an inclusive approach to reduce power asymmetries.


2013 ◽  
Vol 136 (1) ◽  
Author(s):  
Navid Shahangian ◽  
Damon Honnery ◽  
Jamil Ghojel

Interest is growing in the benefits of homogeneous charge compression ignition engines. In this paper, we investigate a novel approach to the development of a homogenous charge-like environment through the use of porous media. The primary purpose of the media is to enhance the spread as well as the evaporation process of the high pressure fuel spray to achieve charge homogenization. In this paper, we show through high speed visualizations of both cold and hot spray events, how porous media interactions can give rise to greater fuel air mixing and what role system pressure and temperature plays in further enhancing this process.


2016 ◽  
Vol 33 (8) ◽  
pp. 19-23 ◽  
Author(s):  
Daniella Smith

Purpose The purpose of this study is to examine student perceptions of flipped learning lessons designed to teach information literacy skills. Design/methodology/approach A mixed-method design was implemented using a paper-based survey and an online focus group. The survey asked questions about the participants’ perceptions of the flipped lessons. The focus group was used to clarify the participants’ responses to the survey questions. Findings A majority of the students enjoyed completing the lessons. Responses also indicated that a majority of the students felt that the lessons helped them prepare for class. However, issues with computers and internet connectivity at home resulted in some of the students completing the lessons before or after school. Research limitations/implications This study was limited to a class of 21 students enrolled in a public school in North Texas. Originality/value There is limited research supporting the value of flipped learning in relation to the technology implementation role of school librarians. This study provides insights into how school librarians can develop flipped learning lessons in collaboration with classroom teachers to improve the information literacy skills of students.


Author(s):  
Yuanxin Zhou ◽  
Shaik Jeelani

In this study, a high-intensity ultrasonic liquid processor was used to obtain a homogeneous molecular mixture of epoxy resin and carbon nano fiber. The carbon nano fibers were infused into the part A of SC-15 (diglycidylether of Bisphenol A) through sonic cavitations and then mixed with part B of SC-15 (cycloaliphatic amine hardener) using a high-speed mechanical agitator. The trapped air and reaction volatiles were removed from the mixture using high vacuum. Nanophased epoxy with 2 wt.% CNF was then utilized in a vacuum assisted resin transfer molding (VARTM) set up with carbon fabric to fabricate laminated composites. The effectiveness of CNF addition on matrix dominated properties of composites has been evaluated by compression, open hole compression and inter-laminar shear. The compression strength, open hole compression strength and ILS were improved by 21%, 23% and 15%, respectively as compared to the neat composite.


2021 ◽  
Vol 17 ◽  
Author(s):  
Swayamprakash Patel ◽  
Ashish Patel ◽  
Mruduka Patel ◽  
Umang Shah ◽  
Mehul Patel ◽  
...  

Background: Probe sonication and High-speed homogenizer are comparatively costly equipment to fabricate the nanoparticles. Many academic and research institutions cannot afford the procurement and maintenance of such sophisticated equipment. In the present work, a newer idea is conceptualized, which can be adopted by the underprivileged research institutions to fabricate solid lipid nanoparticles (SLN) in the absence of sophisticated equipment. The current work describes the pilot-level trials of this novel approach. This study represents the preliminary proof-of-concept trials for which the Indian patent application (3508/MUM/2015) is filed. Method: A frugal piece of equipment was made using a 50 ml centrifuge tube with conical bottom and a piezoelectric mist maker or humidifier. SLNs were prepared by combining the quasi-emulsion solvent evaporation approach and ultrasonic vibration approach. A quasi-emulsion was composed by the dropwise mixing of the organic solvent containing drug & lipid with an aqueous solution containing surfactant under continuous ultrasonic vibration in the piezoelectric chamber. The size of the droplets was significantly reduced due to piezoelectric ultrasonic vibration. Under the provision of mild vacuum and heat generated by vibration, the organic solvent was evaporated, which leaves behind a suspension of SLN. In the present work, albendazole was selected as a model drug. Various trials with Compritol 888 ATO® and Precirol ATO 5® as a lipid carrier and Tween 80 and Poloxamer 188 as a surfactant were performed. Zeta potential of SLNs was improved by the addition of polyelectrolytes like K2SO4 and Na4P2O7. Result and Conclusion: The ratio of drug to lipid was optimized to 1:4 for the most favorable results. SLN with a minimum Z-average diameter of 98.59 nm, -21 mV zeta potential, and 34.064 % (SD 10.78, n=9) entrapment efficiency were developed using the Precirol ATO 5 ® as a lipid carrier. The proof of concept for this novel approach is established through the development of Albendazole SLNs. This approach must also be evaluated for the development of polymeric nanoparticles and vesicular formulations. The further sophistication of the frugal equipment may allow more control over the quality of SLN. This approach will enable underprivileged researchers to prepare Nanopharmaceuticals. Researchers and students of such institutions can focus on the application of SLN by resolving the constraint of sophisticated equipment with this novel approach. This novel approach should also be tried for polymeric and vesicular nanopharmaceuticals.


Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1561
Author(s):  
Hery Tri Waloyo ◽  
U Ubaidillah ◽  
Dominicus Danardono Dwi Prija Tjahjana ◽  
Muhammad Nizam ◽  
Muhammad Aziz

The braking torque mathematical modelling in electromagnetic eddy current brake (ECB) often ignores the skin effect that occurrs during operation. However this phenomenon can not be simply neglected. Therefore, this paper presents a mathematical model of braking torque for a unipolar axial type of ECB system with a non-magnetic disk, which considers the skin effects. The use of mathematical models that consider the existence of skin effects is significant in approaching the braking torque according to the actual condition. The utilization of generic calculations to the model of the ECB braking torque leads to invalid results. Hence, in this paper, the correction factor was added to improve the braking torque calculation as a comparator to the proposed equation. However, the modification and addition of the correction factor were only valid to estimate the low-speed regimes of torque, but very distant for the high-speed condition. From the comparison of calculated values using analytical and 3D modelling, the amount of braking torque at a low speed was found to have an average error for the equation using a correction factor of 1.78 Nm, while after repairing, a value of 1.16 Nm was obtained. For the overall speed, an average error of 14.63 Nm was achieved, while the proposed equation had a small difference of 1.79 Nm. The torque difference from the calculation results of the proposed model with the measurement value in the experiment was 4.9%. Therefore, it can be concluded that the proposed equation provided a better braking torque value approach for both low and high speeds.


2020 ◽  
Vol 70 (4) ◽  
pp. 366-373
Author(s):  
Congliang Ye ◽  
Qi Zhang

To prevent the initiation failure caused by the uncontrolled fuze and improve the weapon reliability in the high-speed double-event fuel-air explosive (DEFAE) application, it is necessary to study the TDF motion trajectory and set up a twice-detonating fuze (TDF) design system. Hence, a novel approach of realising the fixed single-point center initiation by TDF within the fuel air cloud is proposed. Accordingly, a computational model for the TDF motion state with the nonlinear mechanics analysis is built due to the expensive and difficult full-scale experiment. Moreover, the TDF guidance design system is programmed using MATLAB with the equations of mechanical equilibrium. In addition, by this system, influences of various input parameters on the TDF motion trajectory are studied in detail singly. Conclusively, the result of a certain TDF example indicates that this paper provides an economical idea for the TDF design, and the developed graphical user interface of high-efficiency for the weapon designers to facilitate the high-speed DEFAE missile development.


Author(s):  
Hamid Yahya Hussain ◽  

Despite the high morbidity and mortality rates of COVID-19 infection china witnessed during the first two months of 2020, and compared to the short time of the epidemic among Wuhan city population in Hubei territory, the response of the health system to the disaster in this country was significantly effective, despite what seemed clear in the early days that the virus was fierce to the point of conquering the capabilities of the country, and it is so explosive, we all had the feeling that China was on the verge of complete collapse within few weeks.


Sign in / Sign up

Export Citation Format

Share Document