Dry Powder Deliver of Friction Reducers: A Step Change in Slickwater Fracturing

2021 ◽  
Author(s):  
Blevins John ◽  
Mark Van Domelen ◽  
Zach West ◽  
Jason Rall ◽  
Drake Wakefield

Abstract Since the early development of unconventional resource plays, slickwater fracturing fluids have expanded rapidly and are now the most common type of fluid system used in the industry. Slickwater and viscosifying friction reducer (VFR) fluids consist of polyacrylamide (PAM) polymers and are typically delivered to location in a liquid form such as a suspension or emulsion in a hydrocarbon-based carrier fluid. Recently, advances in dry powder delivery operations have provided unique advantages over the liquid versions of FRs including cost savings and improved health, safety and environmental (HSE) aspects. This paper describes the dry powder delivery process and describes the advantages that this new technology has brought to field operations. The method involves delivering polyacrylamide powder for slickwater fracturing treatments directly into the source water on location, thereby eliminating the use of liquid polymer slurries or emulsions. Liquid friction reducers typically contain 20-30% active polymer loading, with the remaining volume being the carrier fluid to keep the polymer in suspension. By delivering 100% powder, several benefits are gained including elimination of truck deliveries of FR liquids to location, reduction of total chemical volumes by 70-80%, reduction of spill hazards, and lower overall chemical costs. Different powders are available for various applications including the use of fresh or produced water, and viscosifying or non-viscosifying polymers. The key technology for "dry on the fly" (DOTF) operations is the powder delivery equipment. Due to the different molecular structures between polyacrylamide and guar polymers, delivering PAM is more technically challenging than guar and requires much higher mixing energy to achieve proper dispersion and hydration. The delivery system described in this paper uses a unique technology which creates the necessary conditions for powder mixing and has been successfully applied on over 350 wells since early 2019, with over 7,000 tons of polymer delivered.

2021 ◽  
Author(s):  
Cindy Chairunissa ◽  
Deny Kalfarosi Amanu ◽  
Grizki Astari ◽  
Eska Indrayana

Abstract Kedung Keris (KK) is a sour oil field based in Cepu Block, Indonesia. KK field was originally planned to have a processing facility with separate pipelines to deliver crude & produced water, while the gas was planned to be flared. To reduce cost, this concept was changed to a wellpad with full well stream pipeline with new technology of Fiber Optic Leak Detection Sensing System (LDSS) as a key enabler. The fiber optic LDSS functions by leveraging fiber optic cable attached to the pipeline to detect leak as well as intrusion to the pipeline's Right-of-Way through real-time analysis of physical characteristics of a leak and intrusion, such as changes in temperature, pressure, ground strain and acoustics. The implementation of LDSS, together with other safeguards built into the pipeline design, operations and maintenance, allowed the KK Project to eliminate the separation facility at KK wellpad and an additional water pipeline. It also reduces the flaring by billions of standard cubic feet of gas cumulative until end of PSC life as originally all gas planned to be flared. The change of KK Project concept altogether yielded tens of millions of US dollar gross cost savings (~30% of CAPEX + OPEX reduction) following the KK startup in late 2019. The installed LDSS proven to detect leak for up to few meters location accuracy and has intrusion detection capability. KK Project has pioneered the implementation of fiber optic leak detection system for Indonesia oil and gas companies. This work provided further insight to the utilization of such technology in full well stream pipeline where traditional leak detection system implementation will not be acceptable. Consecutively, full well stream pipeline deployment can lead to future CAPEX + OPEX efficiency in facility project design and operation, as well as flaring reduction opportunity.


2022 ◽  
Author(s):  
Abdelrahman Kotb ◽  
Tariq Almubarak ◽  
Hisham A. Nasr-El-Din

Abstract Slickwater fracturing has been phenomenally successful in unconventional shale formations due to their unique geomechanical properties. Nevertheless, these treatments consume large volumes of water. On average, hydraulic fracturing treatments use up to 13,000,000 gallons of water in unconventional wells. In an effort to reduce the use of freshwater, research has focused on developing friction reducers (FR) that can be used in high salinity brines such as seawater and produced water. However, commonly used friction reducers precipitate in high salinity brine, lose their friction reduction properties, and cause severe formation damage to the proppant pack. Consequently, this work proposes the use of common surfactants to aid the FR system and achieve salt tolerance at water salinity up to 230,000 ppm. This paper will (a) evaluate five surfactants for use in high salinity FR systems, (b) evaluate the rheological properties of these systems, and (c) evaluate the damage generated from using these systems. Four types of tests were conducted to analyze the performance of the new FR at high salinity brine. These are (a) rheology, (b) static proppant settling, (c) breakability, and (d) coreflood tests. Surfactants with ethylene oxide chain lengths ranging from 6 to 12 were incorporated in the tests. Rheology tests were done at temperatures up to 150°F to evaluate the FR at shear rates between 40-1000 s-1. Proppant settling tests were performed to investigate the proppant carrying capacity of the new FR system. Breakability and coreflood tests were conducted to study the potential damage caused by the proposed systems. Rheology tests showed that using surfactants with high ethylene oxide chain length (>8) improved the performance of the FR at water salinity up to 230,000 ppm. Anionic surfactants performed better than cationic surfactants in improving FR performance. The ammonium persulfate was used as a breaker and showed effectiveness with the proposed formula. Finally, the retained permeability after 12 hours of injecting the FR was over 95%. This shows that after using this system, the productivity of the formation is minimally affected by the new FR system. This research provides the first guide on studying the impact of using different ethylene oxide chain lengths of surfactants in developing new FR systems that can perform well in a high salinity environment. Given the economic and environmental benefits of reusing produced water, this new system can save costs that were previously spent on water treatments.


2021 ◽  
Vol 15 (2) ◽  
pp. 134-142
Author(s):  
Boris Zeylik ◽  
Yalkunzhan Arshamov ◽  
Refat Baratov ◽  
Alma Bekbotayeva

Purpose. Exploration and predicting the prospective areas in the Zhezkazgan ore region to set up detailed prospecting and evaluation works using new integrated technologies of prediction constructions in the mineral deposits geology. Methods. An integrated methodological approach is used, including methods for deciphering the Earth’s remote sensing (ERS) data, the use of geophysical data and methods of analogy and actualism. All constructions are made in accordance with the principles of shock-explosive tectonics (SET). Prediction constructions are started with the selection of remote sensing data for the studied region and interpretation based on the processing of radar satellite images obtained from the Radarsat-1 satellite. The radar satellite images are processed in the Erdas Imagine software package. Findings. New local prospective areas have been identified, within which it is expected to discover the deposits. Their reserves are to replenish the depleted ore base in the Zhezkazgan region. Area of the gravity maximum 1 (the Near), considered to be the most promising, is located in close proximity to the city of Zhezkazgan; area of the gravity maximum 2 (the Middle); area of the gravity maximum 3 (the Distant-Tabylga); area of the gravity maximum 6 (the Central). A prospective area has been also revealed, overlaid by a loose sediment cover and located inside the Terekty ring structure, as well as the area of a thick stratum of pyritized grey sandstones, which is adjacent to the Sh-2 well drilled to the south of the Zhezkazgan field. Originality. The use of a new prediction technology, in contrast to the known ones, is conditioned by the widespread use of the latest remote information from satellite images, which increases the accuracy of identifying the prospective areas of fields. Practical implications. The new technology for predicting mineral deposits makes it possible to significantly reduce the areas exposed to priority prospecting, which provides significant cost savings.


Author(s):  
Mike Wilson

PurposeThe paper aims to report on a new welding technology, TIP TIG.Design/methodology/approachThe principle of operation and benefits of the technology are described together with a typical application.FindingsThe study finds that the technology provides the quality of TIG welding at the speeds of MIG welding, providing significant cost savings to the user.Practical implicationsTIP TIG provides a good opportunity for all users of robotic MIG welding to improve the quality of their product and reduce their costs.Originality/valueThe paper introduces a new and useful technology to the robot industry.


SPE Journal ◽  
2016 ◽  
Vol 22 (02) ◽  
pp. 615-621 ◽  
Author(s):  
N. E. Pica ◽  
C.. Terry ◽  
K.. Carlson

Summary It has been common practice to use a freshwater source (either ground water or surface water) as the base fluid for hydraulic fracturing with crosslinked-gel fluids. Currently, oil and gas operators are beginning to reuse and recycle the main byproduct of oil extraction, which is produced water. However, because of the high variability of produced-water quality (temporal and spatial), and the high content of total dissolved solids (TDS), the viscosity targets for the fluid can be difficult to achieve. The research described in this paper examines the sensitivity of higher-salinity waters to several variables related to the gel-formation process. The polymer used for the gel fluid was a carboxymethyl cellulose (CMC) derivative, and zirconium (Zr) was used as the crosslinking metal. Rheology experiments were conducted at different pH values, polymer loading, and crosslinker concentrations. The outcome of this research is presented in 3D contour-peak-viscosity maps that can be used by oil and gas operators and service companies to optimize the chemicals that are applied, thus reducing costs.


2015 ◽  
Vol 53 (8) ◽  
pp. 2473-2479 ◽  
Author(s):  
Anthony Tran ◽  
Kevin Alby ◽  
Alan Kerr ◽  
Melissa Jones ◽  
Peter H. Gilligan

Matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) mass spectrometry (MS) is an emerging technology for rapid identification of bacterial and fungal isolates. In comparison to conventional methods, this technology is much less labor intensive and can provide accurate and reliable results in minutes from a single isolated colony. We compared the cost of performing the bioMérieux Vitek MALDI-TOF MS with conventional microbiological methods to determine the amount saved by the laboratory by converting to the new technology. Identification costs for 21,930 isolates collected between April 1, 2013, and March 31, 2014, were directly compared for MALDI-TOF MS and conventional methodologies. These isolates were composed of commonly isolated organisms, including commonly encountered aerobic and facultative bacteria and yeast but excluding anaerobes and filamentous fungi. Mycobacterium tuberculosis complex and rapidly growing mycobacteria were also evaluated for a 5-month period during the study. Reagent costs and a total cost analysis that included technologist time in addition to reagent expenses and maintenance service agreement costs were analyzed as part of this study. The use of MALDI-TOF MS equated to a net savings of $69,108.61, or 87.8%, in reagent costs annually compared to traditional methods. When total costs are calculated to include technologist time and maintenance costs, traditional identification would have cost $142,532.69, versus $68,886.51 with the MALDI-TOF MS method, resulting in a laboratory savings of $73,646.18, or 51.7%, annually by adopting the new technology. The initial cost of the instrument at our usage level would be offset in about 3 years. MALDI-TOF MS not only represents an innovative technology for the rapid and accurate identification of bacterial and fungal isolates, it also provides a significant cost savings for the laboratory.


Author(s):  
Alvaro J. Rojas ◽  
Marcos Esterman

In today’s product development environment, most companies develop product platforms rather than individual products due to the time and cost savings that are reaped from subsequent development efforts. Most of the product platform development literature focuses on the development decisions for a product platform while it is under development, which is logically where the biggest benefits would be gained. However when a new market or a new technology arises, firms often struggle to assess these opportunities within the context of their existing product platforms. There is relatively little work that examines the product platform decisions after the platform has been developed and new, unanticipated opportunities are presented to the development organization. The focus of this work is to leverage the existing literature to development an impact assessment process that explicitly accounts for the constraints of a preexisting product platform when considering new technology and/or market opportunities. In this paper, an overview of the overall assessment process is presented. This is followed by the development of the impact metrics and a case study to illustrate the assessment process. The paper concludes with the next step in this work.


2021 ◽  
Author(s):  
Bernard McCoy ◽  
Peter MacInnes ◽  
Diogenes Angelidis ◽  
Robert Collins ◽  
Julio Sosa ◽  
...  

Abstract In order for capital-intensive deepwater prospects to remain at investment grade potential, it is important the industry achieve meaningful improvement in capital efficiency. Achieving this goal will require a multi-faceted strategy in which advanced new technology and digital transformation will play a determining role. This paper will address the optimization of rig operations through deployment of an advanced Remotely Operated Vehicle (ROV) system that leverages precision robotics and automation technologies; reducing total cost of ownership (TCO) through increased rig productivity, operational certainty and overall utilization. Current ROV technology faces several key limitations which contribute to both schedule and cost variation. These inefficiencies are a combination of human skill variance, ROV system limitations and reliability. Advanced ROV systems have been deployed on two deepwater rigs to demonstrate that machine vision and precision robotics technologies will radically improve the predictability and efficiency of operations. Comprehensive metrics addressing safety, budget impact, cost avoidance & reduction, inventory reduction & non price TCO have been developed to capture the efficiencies and identify the net improvement to drilling and completion operations and yield outcome-based performance. An overview of the key deficiencies and limitations of legacy ROV operations will be conveyed, focusing on; i) High dependency on ROV pilot subsea task skills, ii) Worksite efficiency and ROV availability, iii) Restricted tooling capabilities per dive, iv) Rental tooling logistics and cost, v) Equipment reliability at depth, vi) Inefficient tooling changes, and vii) Dive duration and lost time efficiency launch/recovery time. An overview of how the advanced ROV system resolves these issues will be explained. In addition, an explanation of the productivity metrics will be conveyed, supported with data from the active offshore projects. Key conclusions from the data identify that enhanced robotics will achieve the objectives of i) Reducing schedule and cost risks which improve total cost of ownership, ii) Enhancing capability and improved wellsite efficiency, and iii) Increasing subsea data. The performance issues of legacy ROV operations and associated project cost impact is currently not widely recognized by the offshore drilling community. The realized limitations of such ROV operations and lack of useful performance metrics to identify non-productive time will be explained. The progression in robotic design that drives a new era of subsea robotic efficiency will be conveyed with results from offshore operations, combined with robust metrics that enable significant operational value and cost savings to be attained.


2021 ◽  
Author(s):  
Rasim Serdar Rodoplu ◽  
Adegbenga O. Sobowale ◽  
Jon E. Hanson ◽  
Beau R. Wright

Abstract Multistage fracturing (MSF) ball drop completion systems have been utilized around the globe for effectively treating formations completed as open hole and cemented. Multiple, high-rate hydraulic fracturing stages are pumped through these completions while gaining efficiency during pumping operations. A challenge within the industry was developing systems that are capable of higher pressures (greater than 10k psi) while still being able to be deployed in challenging openhole environments with minimum equipment and intervention requirements. This paper will discuss the planning, deployment and fracturing execution operations of an improved version of one of these systems. To be able to effectively utilize any MSF completion system; formation properties, deployment environment, lateral length, openhole size, liner size, and tubing movements during fracturing should be thoroughly analyzed and equally considered. To create a reliable system, another important consideration is how the system will be deployed; a long string to surface, or will it be deployed as part of a liner hanger system? In the case of the latter, it should be compatible with the liner hanger system by accommodating multiple balls to set and release the hanger system and actuate the openhole packers. In tight formation environments, where treating pressure differentials reaches as high as 15,000 psi during fracturing operations, openhole packers that are capable of holding these pressures in challenging openhole conditions are needed. Not only the packers but also the remaining completion system components need to be capable of withstanding, including burst, collapse, and ball-to-ball seat differential while simultaneously accommodating the pressure with cooling and ballooning induced tubing movement caused by these high pressure treatments. Improving such a robust design with innovative solutions, such as dissolvable frac balls that can handle 15,000 psi differential, optimizes the overall process. The completion design, deployment, and subsequent fracturing operations on a well showcases how effective consideration of components operates as a system can create a reliable MSF system. It also demonstrates how close collaboration between reservoir management, production engineering, completion experts, and vendor results in a coordination of efforts that eliminates operational hazards, thus ensuring smooth operations. The successful deployment of an openhole MSF completion system that can handle 15,000 psi with dissolving frac balls and eliminating openhole anchors helped pave the way to deal with tighter formations in an efficient and cost-effective manner. With the help of this new technology, the well planners were able to address operational challenges that would have otherwise required additional equipment or would have limited deployment capabilities. The engineering approach and design to develop this completion system and utilization in the right candidate confirmed the benefit of the novel completion for field development options.


2008 ◽  
Vol 139 (2_suppl) ◽  
pp. P164-P165
Author(s):  
Paul E Lomeo ◽  
Judith Finneman

Objectives Balloon sinuplasty is a new procedure that is gaining popularity in the United States. However, with all new technology, there is an increase in cost. Balloon sinuplasty increases the overhead for the facility where it is being performed and does not affect reimbursement. To decrease the cost of new technology, the physician, facility, and the company must all think of creative methods to acheive this goal. Methods In our institution, we had 60 patients that had balloon sinuplasties performed, with all of them involving both maxilary and frontal sinus. Re-useable olive-tip cannula was used instead of the company's recommended disposable guide catheter for the frontal and maxillary sinuses. In using the olive-tip as a guide catheter, the guide wire and balloon catheter are easily directed to the opening of both the maxillary and frontal sinus. Results The outcome from all 60 patients was successful, with none returning for revision. In using the olive-tip cannula instead of the disposable catheter guide for the maxillary and frontal sinuses, there was a savings of $37,500 for the institution. Conclusions The use of an olive-tip cannula from the basic FESS set decreases the cost of performing balloon sinuplasty. This suction-tip can replace the catheter guide without compromising the surgical procedure and is easy to use by the experienced sinus surgeon. There was a cost savings of $625 per procedure when using an olive-tip cannula instead of the company's recommended catheter guide.


Sign in / Sign up

Export Citation Format

Share Document