The Perspective of Novel Chemical Tracer Technology in Reservoir Surveillance and Hydrodynamic Modelling for More Efficient Hydrocarbon Recovery

2021 ◽  
Author(s):  
Nadir Husein ◽  
Evgeny Aleksandrovich Malyavko ◽  
Ruslan Rashidovich Gazizov ◽  
Anton Vitalyevich Buyanov ◽  
Aleksey Aleksandrovich Romanov ◽  
...  

Abstract Today, efficient field development cannot be managed without proper surveillance providing oil companies with important geological and engineering information for prompt decision-making. Once continuous production is achieved, it is necessary to maintain a consistently high level of oil recovery. As a rule, a reservoir pressure maintenance system is extensively implemented for this purpose over the entire area because of decreasing reservoir pressure. At the same time, it is important to adjust the water injection to timely prevent water cut increasing in production wells, while maintaining efficient reservoir pressure compensation across the field. That is why it is necessary to have a relevant inter-well hydrodynamic model as well as to quantify the water injection rate. There are many ways to analyse the efficiency of the reservoir pressure maintenance system, but not all of them yield a positive, and most importantly, a reliable result. It is crucial that extensive zonal production surveillance efforts generate a significant economic effect and the information obtained helps boost oil production. Thus, the main objective of this paper is to identify a method and conduct an effective study to establish the degree of reservoir connectivity and quantify the inter-well parameters of a low permeability tested field.

1965 ◽  
Vol 5 (02) ◽  
pp. 131-140 ◽  
Author(s):  
K.P. Fournier

Abstract This report describes work on the problem of predicting oil recovery from a reservoir into which water is injected at a temperature higher than the reservoir temperature, taking into account effects of viscosity-ratio reduction, heat loss and thermal expansion. It includes the derivation of the equations involved, the finite difference equations used to solve the partial differential equation which models the system, and the results obtained using the IBM 1620 and 7090–1401 computers. Figures and tables show present results of this study of recovery as a function of reservoir thickness and injection rate. For a possible reservoir hot water flood in which 1,000 BWPD at 250F are injected, an additional 5 per cent recovery of oil in place in a swept 1,000-ft-radius reservoir is predicted after injection of one pore volume of water. INTRODUCTION The problem of predicting oil recovery from the injection of hot water has been discussed by several researchers.1–6,19 In no case has the problem of predicting heat losses been rigorously incorporated into the recovery and displacement calculation problem. Willman et al. describe an approximate method of such treatment.1 The calculation of heat losses in a reservoir and the corresponding temperature distribution while injecting a hot fluid has been attempted by several authors.7,8 In this report a method is presented to numerically predict the oil displacement by hot water in a radial system, taking into account the heat losses to adjacent strata, changes in viscosity ratio with temperature and the thermal-expansion effect for both oil and water. DERIVATION OF BASIC EQUATIONS We start with the familiar Buckley-Leverett9 equation for a radial system:*Equation 1 This can be written in the formEquation 2 This is sometimes referred to as the Lagrangian form of the displacement equation.


2014 ◽  
Vol 1073-1076 ◽  
pp. 2310-2315 ◽  
Author(s):  
Ming Xian Wang ◽  
Wan Jing Luo ◽  
Jie Ding

Due to the common problems of waterflood in low-permeability reservoirs, the reasearch of finely layered water injection is carried out. This paper established the finely layered water injection standard in low-permeability reservoirs and analysed the sensitivity of engineering parameters as well as evaluated the effect of the finely layered water injection standard in Block A with the semi-quantitative to quantitative method. The results show that: according to the finely layered water injection standard, it can be divided into three types: layered water injection between the layers, layered water injection in inner layer, layered water injection between fracture segment and no-fracture segment. Under the guidance of the standard, it sloved the problem of uneven absorption profile in Block A in some degree and could improve the oil recovery by 3.5%. The sensitivity analysis shows that good performance of finely layered water injection in Block A requires the reservoir permeability ratio should be less than 10, the perforation thickness should not exceed 10 m, the amount of layered injection layers should be less than 3, the surface injection pressure should be below 14 MPa and the injection rate shuold be controlled at about 35 m3/d.


2019 ◽  
pp. 81-85
Author(s):  
Damir K. Sagitov

The study of the causes of changes in the effectiveness of the reservoir pressure maintenance system in terms of the interaction of injection and production wells is an important and insufficiently studied problem, especially in terms of the causes of the attenuation of stable connections between the interacting wells. Based on the results of the calculation of the Spearman pair correlation coefficient, the reasons for the change in the interaction of wells during the flooding process at various stages were estimated. Of particular interest are identified four characteristic interactions, which are determined by the periods of formation of the displacement front.


2018 ◽  
Vol 785 ◽  
pp. 159-170
Author(s):  
Vadim Aleksandrov ◽  
Kirill Galinskij ◽  
Andrey Ponomarev ◽  
Vadim Golozubenko ◽  
Yuriy Sivkov

One of the most important aspects in the activities of oil companies in the Western Siberia is to improve the effectiveness of water-flooding as the main method of impact on the formation. This is due to the fact that at the present time reservoirs of a complex structure with difficult to recover reserves prevail among newly introduced development objects, the extraction of which is extremely difficult using a simple method of water injection volumes regulation. First of all, this refers to reservoirs of Jurassic deposits, which are characterized by the most complex geological structure and porosity and permeability properties. A promising direction in improving the water-flooding system at such objects is the use of physical and chemical technologies to enhance the oil recovery of formations, and primarily, referring to the diverter technology. The research objective is to evaluate the effectiveness of using “hard” type diverter compositions to enhance oil recovery of formations. With the help of detailed oil-field analysis and field-geophysical studies, the nature of the development of oil reserves for Jurassic development sites has been assessed.


2009 ◽  
Vol 12 (05) ◽  
pp. 671-682 ◽  
Author(s):  
Paul J. van den Hoek ◽  
Rashid A. Al-Masfry ◽  
Dirk Zwarts ◽  
Jan-Dirk Jansen ◽  
Bernhard Hustedt ◽  
...  

Summary It is well established within the industry that water injection mostly takes place under induced fracturing conditions. Particularly in low-mobility reservoirs, large fractures may be induced during the field life. This paper presents a new modeling strategy that combines fluid flow and fracture growth (fully coupled) within the framework of an existing "standard" reservoir simulator. We demonstrate the coupled simulator by applications to repeated five-spot pattern flood models, addressing various aspects that often play an important role in waterfloods: shortcut of injector and producer, fracture containment to the reservoir layer, and areal and vertical reservoir sweep. We also demonstrate how induced fracture dimensions (length, height) can be very sensitive to typical reservoir engineering parameters, such as fluid mobility, mobility ratio, 3D saturation distribution (in particular, shockfront position), 3D temperature distribution, positions of wells (producers, injectors), and geological details (e.g., layering and faulting). In particular, it is shown that lower overall (time-dependent) reservoir transmissibility will result in larger induced fractures. Finally, it is demonstrated how induced fractures can be taken into account to determine an optimum life-cycle injection rate strategy. The results presented in this paper are expected to also apply to (part of) enhanced-oil-recovery operations (e.g., polymer flooding).


2011 ◽  
Vol 383-390 ◽  
pp. 3809-3813
Author(s):  
Yong Li Wang ◽  
Tao Li ◽  
Zhi Guo Fu ◽  
Shu Xia Liu ◽  
Bai Lin Yu ◽  
...  

The pilot block is a heterogeneous reservoir with low permeability which is only 100-200(mD). Polymer flooding will be used to enhance oil recovery (EOR). Therefore, some experiment will be carried out in this pilot block .According to the simulation results, we can infer the effect factors of the polymer flooding such as concentration, injection rate, slug amounts, and well pattern. It gives us effective information for the field development plan.


Author(s):  
G.Zh. Moldabayeva ◽  
◽  
A.Kh. Agzamov ◽  
R.T. Suleimenova ◽  
D.K. Elefteriadi ◽  
...  

This article discusses a digital geological model, the transfer of borehole data to the geological grid, and the modeling of the technology of alternating steam and water injection. Alternating injection involves the cyclic injection of steam and water into an injection well in high-viscosity oil fields. The essence of this technology is that during the steam injection for 2-4 months, the formation warms up, leading to a decrease in viscosity and an increase in oil mobility. Then comes the period of water injection, during which the production of already warmed oil continues and the formation pressure is maintained. For digital geological modeling, the following data were collected, processed and prepared: a list of wells that open the object of modeling, coordinates of wellheads, well altitudinal data, inclinometry of well trajectories, GМS data on wells, analysis of wells drilled with core sampling, and digitized seismic data (structural surfaces on the roof of stratigraphic horizons, parameter maps, contact surfaces, faults, structural maps on the roof of target horizons with faults, isochron maps, velocity maps).


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Xiang Li ◽  
Yuan Cheng ◽  
Wulong Tao ◽  
Shalake Sarulicaoketi ◽  
Xuhui Ji ◽  
...  

The production of a low permeability reservoir decreases rapidly by depletion development, and it needs to supplement formation energy to obtain stable production. Common energy supplement methods include water injection and gas injection. Nitrogen injection is an economic and effective development method for specific reservoir types. In order to study the feasibility and reasonable injection parameters of nitrogen injection development of fractured reservoir, this paper uses long cores to carry out displacement experiment. Firstly, the effects of water injection and nitrogen injection development of a fractured reservoir are compared through experiments to demonstrate the feasibility of nitrogen injection development of the fractured reservoir. Secondly, the effects of gas-water alternate displacement after water drive and gas-water alternate displacement after gas drive are compared through experiments to study the situation of water injection or gas injection development. Finally, the reasonable parameters of nitrogen gas-water alternate injection are optimized by orthogonal experimental design. Results show that nitrogen injection can effectively enhance oil production of the reservoir with natural fractures in early periods, but gas channeling easily occurs in continuous nitrogen flooding. After water flooding, gas-water alternate flooding can effectively reduce the injection pressure and improve the reservoir recovery, but the time of gas-water alternate injection cannot be too late. It is revealed that the factors influencing the nitrogen-water alternative effect are sorted from large to small as follows: cycle injected volume, nitrogen and water slug ratio, and injection rate. The optimal cycle injected volume is around 1 PV, the nitrogen and water slug ratio is between 1 and 2, and the injection rate is between 0.1 and 0.2 mL/min.


2019 ◽  
Vol 89 ◽  
pp. 04002 ◽  
Author(s):  
Magali Christensen ◽  
Xanat Zacarias-Hernandez ◽  
Yukie Tanino

Lab-on-a-chip methods were used to visualize the pore-scale distribution of oil within a mixed-wet, quasi-monolayer of marble grains packed in a microfluidic channel as the oil was displaced by water. Water injection rates corresponding to microscopic capillary numbers between Ca = 5 × 10-8 and 2 × 10-4 (Darcy velocities between 0.3 and 1100 ft/d) were considered. As expected, early-time water invasion transitions from stable displacement to capillary fingering with decreasing Ca, with capillary fingering observed at Ca ≤ 10-5. End-point oil saturation decreases with Ca over the entire range of Ca considered, consistent with the canonical capillary desaturation curve. In contrast, Sor derived from approximate numerical simulations using reasonable Pc(Sw) do not display a strong dependence on Ca. These results suggest that the Ca dependence of end-point oil saturation is largely due to capillary end effects which, under conditions considered presently, affect the entire length of the packed bed.


2022 ◽  
Author(s):  
Erfan Mustafa Al lawe ◽  
Adnan Humaidan ◽  
Afolabi Amodu ◽  
Mike Parker ◽  
Oscar Alvarado ◽  
...  

Abstract Zubair formation in West Qurna field, is one of the largest prolific reservoirs comprising of oil bearing sandstone layers interbedded with shale sequences. An average productivity index of 6 STB/D/psi is observed without any types of stimulation treatment. As the reservoir pressure declines from production, a peripheral water injection strategy was planned in both flanks of the reservoir to enhance the existing wells production deliverability. The peripheral injection program was initiated by drilling several injectors in the west flank. Well A1 was the first injector drilled and its reservoir pressure indicated good communication with the up-dip production wells. An injection test was conducted, revealing an estimated injectivity index of 0.06 STB//D/psi. Candidate well was then re-perforated and stimulated with HF/HCl mud acid, however no significant improvement in injectivity was observed due to the complex reservoir mineralogy and heterogeneity associated to the different targeted layers. An extended high-pressure injection test was performed achieving an injectivity index of 0.29 STB/D/psi at 4500 psi. As this performance was sub-optimal, a proppant fracture was proposed to achieve an optimal injection rate. A reservoir-centric fracture model was built, using the petrophysical and geo-mechanical properties from the Zubair formation, with the objective of optimizing the perforation cluster, fracture placement and injectivity performance. A wellhead isolation tool was utilized as wellhead rating was not able to withstand the fracture model surface pressure; downhole gauges were also installed to provide an accurate analysis of the pressure trends. The job commenced with a brine injection test to determine the base-line injectivity profile. The tubing volume was then displaced with a linear gel to perform a step-rate / step-down test. The analysis of the step-rate test revealed the fracture extension pressure, which was set as the maximum allowable injection pressure when the well is put on continuous injection. The step-down test showed significant near wellbore tortuosity with negligible perforation friction. A fracture fluid calibration test was then performed to validate the integrated model leak-off profile, fracture gradient and young’s modulus; via a coupled pressure fall-off and temperature log analysis. Based on the fluid efficiency, the pad volume was adjusted to achieve a tip screen-out. The job was successfully pumped and tip screen-out was achieved after pumping over ~90% of the planned proppant volume. A 7 days post-frac extended injection test was then conducted, achieving an injection rate of 12.5 KBWD at 1300 psi with an injectivity index of 4.2 STB/D/psi. These results proved that the implementation of a reservoir-centric Proppant Fracture treatment, can drastically improve the water injection strategy and field deliverability performance even in good quality rock formations. This first integrated fracture model and water injection field strategy, represents a building platform for further field development optimization plans in Southern Iraq.


Sign in / Sign up

Export Citation Format

Share Document