scholarly journals Impact of injection rate on transient oil recovery under mixed-wet conditions: a microfluidic study

2019 ◽  
Vol 89 ◽  
pp. 04002 ◽  
Author(s):  
Magali Christensen ◽  
Xanat Zacarias-Hernandez ◽  
Yukie Tanino

Lab-on-a-chip methods were used to visualize the pore-scale distribution of oil within a mixed-wet, quasi-monolayer of marble grains packed in a microfluidic channel as the oil was displaced by water. Water injection rates corresponding to microscopic capillary numbers between Ca = 5 × 10-8 and 2 × 10-4 (Darcy velocities between 0.3 and 1100 ft/d) were considered. As expected, early-time water invasion transitions from stable displacement to capillary fingering with decreasing Ca, with capillary fingering observed at Ca ≤ 10-5. End-point oil saturation decreases with Ca over the entire range of Ca considered, consistent with the canonical capillary desaturation curve. In contrast, Sor derived from approximate numerical simulations using reasonable Pc(Sw) do not display a strong dependence on Ca. These results suggest that the Ca dependence of end-point oil saturation is largely due to capillary end effects which, under conditions considered presently, affect the entire length of the packed bed.

1965 ◽  
Vol 5 (02) ◽  
pp. 131-140 ◽  
Author(s):  
K.P. Fournier

Abstract This report describes work on the problem of predicting oil recovery from a reservoir into which water is injected at a temperature higher than the reservoir temperature, taking into account effects of viscosity-ratio reduction, heat loss and thermal expansion. It includes the derivation of the equations involved, the finite difference equations used to solve the partial differential equation which models the system, and the results obtained using the IBM 1620 and 7090–1401 computers. Figures and tables show present results of this study of recovery as a function of reservoir thickness and injection rate. For a possible reservoir hot water flood in which 1,000 BWPD at 250F are injected, an additional 5 per cent recovery of oil in place in a swept 1,000-ft-radius reservoir is predicted after injection of one pore volume of water. INTRODUCTION The problem of predicting oil recovery from the injection of hot water has been discussed by several researchers.1–6,19 In no case has the problem of predicting heat losses been rigorously incorporated into the recovery and displacement calculation problem. Willman et al. describe an approximate method of such treatment.1 The calculation of heat losses in a reservoir and the corresponding temperature distribution while injecting a hot fluid has been attempted by several authors.7,8 In this report a method is presented to numerically predict the oil displacement by hot water in a radial system, taking into account the heat losses to adjacent strata, changes in viscosity ratio with temperature and the thermal-expansion effect for both oil and water. DERIVATION OF BASIC EQUATIONS We start with the familiar Buckley-Leverett9 equation for a radial system:*Equation 1 This can be written in the formEquation 2 This is sometimes referred to as the Lagrangian form of the displacement equation.


2014 ◽  
Vol 1073-1076 ◽  
pp. 2310-2315 ◽  
Author(s):  
Ming Xian Wang ◽  
Wan Jing Luo ◽  
Jie Ding

Due to the common problems of waterflood in low-permeability reservoirs, the reasearch of finely layered water injection is carried out. This paper established the finely layered water injection standard in low-permeability reservoirs and analysed the sensitivity of engineering parameters as well as evaluated the effect of the finely layered water injection standard in Block A with the semi-quantitative to quantitative method. The results show that: according to the finely layered water injection standard, it can be divided into three types: layered water injection between the layers, layered water injection in inner layer, layered water injection between fracture segment and no-fracture segment. Under the guidance of the standard, it sloved the problem of uneven absorption profile in Block A in some degree and could improve the oil recovery by 3.5%. The sensitivity analysis shows that good performance of finely layered water injection in Block A requires the reservoir permeability ratio should be less than 10, the perforation thickness should not exceed 10 m, the amount of layered injection layers should be less than 3, the surface injection pressure should be below 14 MPa and the injection rate shuold be controlled at about 35 m3/d.


2009 ◽  
Vol 12 (05) ◽  
pp. 671-682 ◽  
Author(s):  
Paul J. van den Hoek ◽  
Rashid A. Al-Masfry ◽  
Dirk Zwarts ◽  
Jan-Dirk Jansen ◽  
Bernhard Hustedt ◽  
...  

Summary It is well established within the industry that water injection mostly takes place under induced fracturing conditions. Particularly in low-mobility reservoirs, large fractures may be induced during the field life. This paper presents a new modeling strategy that combines fluid flow and fracture growth (fully coupled) within the framework of an existing "standard" reservoir simulator. We demonstrate the coupled simulator by applications to repeated five-spot pattern flood models, addressing various aspects that often play an important role in waterfloods: shortcut of injector and producer, fracture containment to the reservoir layer, and areal and vertical reservoir sweep. We also demonstrate how induced fracture dimensions (length, height) can be very sensitive to typical reservoir engineering parameters, such as fluid mobility, mobility ratio, 3D saturation distribution (in particular, shockfront position), 3D temperature distribution, positions of wells (producers, injectors), and geological details (e.g., layering and faulting). In particular, it is shown that lower overall (time-dependent) reservoir transmissibility will result in larger induced fractures. Finally, it is demonstrated how induced fractures can be taken into account to determine an optimum life-cycle injection rate strategy. The results presented in this paper are expected to also apply to (part of) enhanced-oil-recovery operations (e.g., polymer flooding).


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Emad Waleed Al-Shalabi ◽  
Kamy Sepehrnoori ◽  
Gary Pope

Low salinity water injection (LSWI) is gaining popularity as an improved oil recovery technique in both secondary and tertiary injection modes. The objective of this paper is to investigate the main mechanisms behind the LSWI effect on oil recovery from carbonates through history-matching of a recently published coreflood. This paper includes a description of the seawater cycle match and two proposed methods to history-match the LSWI cycles using the UTCHEM simulator. The sensitivity of residual oil saturation, capillary pressure curve, and relative permeability parameters (endpoints and Corey’s exponents) on LSWI is evaluated in this work. Results showed that wettability alteration is still believed to be the main contributor to the LSWI effect on oil recovery in carbonates through successfully history matching both oil recovery and pressure drop data. Moreover, tuning residual oil saturation and relative permeability parameters including endpoints and exponents is essential for a good data match. Also, the incremental oil recovery obtained by LSWI is mainly controlled by oil relative permeability parameters rather than water relative permeability parameters. The findings of this paper help to gain more insight into this uncertain IOR technique and propose a mechanistic model for oil recovery predictions.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Xiang Li ◽  
Yuan Cheng ◽  
Wulong Tao ◽  
Shalake Sarulicaoketi ◽  
Xuhui Ji ◽  
...  

The production of a low permeability reservoir decreases rapidly by depletion development, and it needs to supplement formation energy to obtain stable production. Common energy supplement methods include water injection and gas injection. Nitrogen injection is an economic and effective development method for specific reservoir types. In order to study the feasibility and reasonable injection parameters of nitrogen injection development of fractured reservoir, this paper uses long cores to carry out displacement experiment. Firstly, the effects of water injection and nitrogen injection development of a fractured reservoir are compared through experiments to demonstrate the feasibility of nitrogen injection development of the fractured reservoir. Secondly, the effects of gas-water alternate displacement after water drive and gas-water alternate displacement after gas drive are compared through experiments to study the situation of water injection or gas injection development. Finally, the reasonable parameters of nitrogen gas-water alternate injection are optimized by orthogonal experimental design. Results show that nitrogen injection can effectively enhance oil production of the reservoir with natural fractures in early periods, but gas channeling easily occurs in continuous nitrogen flooding. After water flooding, gas-water alternate flooding can effectively reduce the injection pressure and improve the reservoir recovery, but the time of gas-water alternate injection cannot be too late. It is revealed that the factors influencing the nitrogen-water alternative effect are sorted from large to small as follows: cycle injected volume, nitrogen and water slug ratio, and injection rate. The optimal cycle injected volume is around 1 PV, the nitrogen and water slug ratio is between 1 and 2, and the injection rate is between 0.1 and 0.2 mL/min.


2019 ◽  
Vol 141 (7) ◽  
Author(s):  
Yanan Ding ◽  
Sixu Zheng ◽  
Xiaoyan Meng ◽  
Daoyong Yang

In this study, a novel technique of low salinity hot water (LSHW) injection with addition of nanoparticles has been developed to examine the synergistic effects of thermal energy, low salinity water (LSW) flooding, and nanoparticles for enhancing heavy oil recovery, while optimizing the operating parameters for such a hybrid enhanced oil recovery (EOR) method. Experimentally, one-dimensional displacement experiments under different temperatures (17 °C, 45 °C, and 70 °C) and pressures (about 2000–4700 kPa) have been performed, while two types of nanoparticles (i.e., SiO2 and Al2O3) are, respectively, examined as the additive in the LSW. The performance of LSW injection with and without nanoparticles at various temperatures is evaluated, allowing optimization of the timing to initiate LSW injection. The corresponding initial oil saturation, production rate, water cut, ultimate oil recovery, and residual oil saturation profile after each flooding process are continuously monitored and measured under various operating conditions. Compared to conventional water injection, the LSW injection is found to effectively improve heavy oil recovery by 2.4–7.2% as an EOR technique in the presence of nanoparticles. Also, the addition of nanoparticles into the LSHW can promote synergistic effect of thermal energy, wettability alteration, and reduction of interfacial tension (IFT), which improves displacement efficiency and thus enhances oil recovery. It has been experimentally demonstrated that such LSHW injection with the addition of nanoparticles can be optimized to greatly improve oil recovery up to 40.2% in heavy oil reservoirs with low energy consumption. Theoretically, numerical simulation for the different flooding scenarios has been performed to capture the underlying recovery mechanisms by history matching the experimental measurements. It is observed from the tuned relative permeability curves that both LSW and the addition of nanoparticles in LSW are capable of altering the sand surface to more water wet, which confirms wettability alteration as an important EOR mechanism for the application of LSW and nanoparticles in heavy oil recovery in addition to IFT reduction.


2021 ◽  
Author(s):  
Nadir Husein ◽  
Evgeny Aleksandrovich Malyavko ◽  
Ruslan Rashidovich Gazizov ◽  
Anton Vitalyevich Buyanov ◽  
Aleksey Aleksandrovich Romanov ◽  
...  

Abstract Today, efficient field development cannot be managed without proper surveillance providing oil companies with important geological and engineering information for prompt decision-making. Once continuous production is achieved, it is necessary to maintain a consistently high level of oil recovery. As a rule, a reservoir pressure maintenance system is extensively implemented for this purpose over the entire area because of decreasing reservoir pressure. At the same time, it is important to adjust the water injection to timely prevent water cut increasing in production wells, while maintaining efficient reservoir pressure compensation across the field. That is why it is necessary to have a relevant inter-well hydrodynamic model as well as to quantify the water injection rate. There are many ways to analyse the efficiency of the reservoir pressure maintenance system, but not all of them yield a positive, and most importantly, a reliable result. It is crucial that extensive zonal production surveillance efforts generate a significant economic effect and the information obtained helps boost oil production. Thus, the main objective of this paper is to identify a method and conduct an effective study to establish the degree of reservoir connectivity and quantify the inter-well parameters of a low permeability tested field.


Energies ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3961
Author(s):  
Haiyang Yu ◽  
Songchao Qi ◽  
Zhewei Chen ◽  
Shiqing Cheng ◽  
Qichao Xie ◽  
...  

The global greenhouse effect makes carbon dioxide (CO2) emission reduction an important task for the world, however, CO2 can be used as injected fluid to develop shale oil reservoirs. Conventional water injection and gas injection methods cannot achieve desired development results for shale oil reservoirs. Poor injection capacity exists in water injection development, while the time of gas breakthrough is early and gas channeling is serious for gas injection development. These problems will lead to insufficient formation energy supplement, rapid energy depletion, and low ultimate recovery. Gas injection huff and puff (huff-n-puff), as another improved method, is applied to develop shale oil reservoirs. However, the shortcomings of huff-n-puff are the low sweep efficiency and poor performance for the late development of oilfields. Therefore, this paper adopts firstly the method of Allied In-Situ Injection and Production (AIIP) combined with CO2 huff-n-puff to develop shale oil reservoirs. Based on the data of Shengli Oilfield, a dual-porosity and dual-permeability model in reservoir-scale is established. Compared with traditional CO2 huff-n-puff and depletion method, the cumulative oil production of AIIP combined with CO2 huff-n-puff increases by 13,077 and 17,450 m3 respectively, indicating that this method has a good application prospect. Sensitivity analyses are further conducted, including injection volume, injection rate, soaking time, fracture half-length, and fracture spacing. The results indicate that injection volume, not injection rate, is the important factor affecting the performance. With the increment of fracture half-length and the decrement of fracture spacing, the cumulative oil production of the single well increases, but the incremental rate slows down gradually. With the increment of soaking time, cumulative oil production increases first and then decreases. These parameters have a relatively suitable value, which makes the performance better. This new method can not only enhance shale oil recovery, but also can be used for CO2 emission control.


2021 ◽  
Author(s):  
Julfree Sianturi ◽  
Bayu Setyo Handoko ◽  
Aditya Suardiputra ◽  
Radya Senoputra

Abstract Handil Field is a giant mature oil and gas field situated in Mahakam Delta, East Kalimantan Indonesia. Peripheral Low Salinity Water injection was performed since 1978 with an extraordinary result. The paper is intending to describe the success story of this secondary recovery by low salinity water injection application in the peripheral of Handil field main zone, which successfully increased the oil recovery and brought down the remaining oil saturation beyond the theoretical value of residual oil saturation number. Water producer wells were drilled to produce low salinity water from shallow reservoirs 400 - 1000 m depth then it was injected to main zone reservoirs where the main accumulation of oil situated. This low salinity water reacted positively with the rock properties and in-situ fluids which was described as wettability alteration in the reservoir. It is related to initial reservoir condition, connate water saturation, rock physics and connate water salinity. This peripheral scheme then observed having the sweeping effect on top of pressure maintenance due to long period of injection. The field production performance was indicating the important reduction of residual oil saturation in some reservoirs with continuous low salinity water injection. From static Oil in Place calculation, some reservoirs have high current oil recovery up to 80%. This was proved by in situ residual oil saturation measurement which was performed in 2007 and 2011. It was indicating the low residual saturation as low as 8% - 15%. This excellent result was embraced by a progressive development plan, where water flooding with pattern and chemical injection will be performed later on. The continuation of this peripheral injection is in an on-going development with patterns injection which is called water flooding development. An important oil recovery can be achieved with a simple scheme of low salinity injection, performed in a close network injection, where the water treatment is simple yet significant oil gain was recovered. This innovation technique brings more revenue with less investment compared to chemical EOR injection.


2021 ◽  
Author(s):  
Songyuan Liu ◽  
Xiaochun Jin ◽  
Deji Liu ◽  
Hao Xu ◽  
Lidong Zhang ◽  
...  

Abstract Traditional Microbial Enhanced Oil Recovery (MEOR) technology assumes the oil recovery is increased by the biosurfactant generating by the subsurface bacteria. However, we identified that increased recovery factor is mainly contributed by stimulating the indigenous bacteria to plug the preferred waterflooding channels, which was proved at laboratory and some high-permeable oilfield, but never implemented in the waterflooding of tight oilfield. This paper presents a comprehensive study on Bio-diversion technique by stimulating indigenous bacteria covering lab research and filed operation lasting 18 months. The lab research comprised: (1) feasibility research using modified recipe and field sample on the stimulation of indigenous microorganisms; and (2) Evaluation of effectiveness of the stimulation based on lab results. A field pilot, consisting of 10 injectors, 10 producers, injecting and producing from multi-zones, reservoir temperature is about 160 F, permeabilities range from 30 md to over 100 md, daily water injection rate is about 2,000 BWPD, pre-treatment water cut is over 90%. It is observed that the water cut has decreased from 98% to 80% gradually (3-6 months after injection). Besides, the water injection index test indicates that the injection profile becomes more evenly after 9 months of microbial nutrient injection because the stimulated bacteria reduce the permeability of more permeable zones and reduce the permeability heterogeneity in the vertical direction. Sharing the field results with the industry may inspire the operators to consider one alternative environmentally friendly and cost-effective approach to increase the recovery factor of tight oil reservoirs. From the technical viewpoint, the field pilot proves that the major mechanisms of MEOR is sweeping the unswept oil by injecting the microbial nutrient to the reservoir to stimulate the indigenous bacteria to block the preferred waterflooding channels.


Sign in / Sign up

Export Citation Format

Share Document