Porcine 2′,5′-oligoadenylate synthetase-like protein inhibits replication of porcine reproductive and respiratory syndrome virus

2019 ◽  
Author(s):  
huawei li ◽  
ruining wang ◽  
wenjia wang ◽  
yinfeng kang ◽  
mengmeng zhao

Abstract Background : Porcine reproductive and respiratory syndrome virus (PRRSV) is a serious pathogen that causes $664 million losses per year to the swine industry. There are few useful vaccines that can provide protection against PRRSV infection. 2′, 5′-oligoadenylate synthetase-like protein (OASL) has antiviral activity, this has not been shown for PRRSV and the mechanism is unknown. Methods : Expression of OASL in porcine alveolar macrophages induced by interferon (IFN)-b stimulation and PRRSV infection was examined by real-time polymerase chain reaction. Exogenous expression and knockdown of OASL were used to determine the role of OASL in the PRRSV replication cycle. The type I IFN signaling pathway was evaluated after OASL overexpression. Results : In this study, we found that the expression of OASL in porcine alveolar macrophages was significantly increased by IFN-b stimulation and PRRSV infection. Porcine-OASL-specific small interfering RNA (siRNA) promoted PRRSV replication, whereas exogenous expression of porcine OASL inhibited replication of the virus. The anti-PRRSV activity of porcine OASL was lost after knockdown of retinoic acid-inducible gene I ( DDX58 , also known as RIG-I ). Conclusions : Porcine OASL suppresses PRRSV replication.

2020 ◽  
Author(s):  
Mengmeng Zhao ◽  
Weili Kong ◽  
Yinfeng Kang ◽  
Huawei Li

Abstract Porcine reproductive and respiratory syndrome virus (PRRSV) is a constant threat to the swine industry worldwide. Currently approved vaccines against PRRSV are losing effectiveness, as new viral strains are often refractory to conventional treatments. Thus, there is an urgent need to find new therapeutic targets to develop novel antiviral drugs. 2′, 5′-oligoadenylate synthetase-like (OASL) protein has antiviral activity, but this has not been demonstrated for PRRSV and the mechanism is not well elucidated. In this study expression of porcine OASL (pOASL) in porcine alveolar macrophages (PAMs) induced by interferon (IFN) -β stimulation and PRRSV infection was examined by real-time polymerase chain reaction (RT-PCR). Exogenous expression and knockdown of pOASL were used to indicate the role of pOASL in the PRRSV replication cycle. The type I IFN signaling pathway was evaluated after pOASL overexpression. Results showed the expression of pOASL in PAMs was significantly increased by IFN-β stimulation or PRRSV infection. pOASL specific small interfering RNA (siRNA) promoted PRRSV replication, whereas exogenous expression of pOASL inhibited infection of PRRSV. The anti-PRRSV activity was lost after knockdown of the Melanoma differentiation-associated protein 5 (MDA5) RNA sensor. Taken together, pOASL inhibits PRRSV infection via the activation of MDA5.


Viruses ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2267
Author(s):  
Xiaoping Wu ◽  
Junyang Fang ◽  
Qiuping Huang ◽  
Xu Chen ◽  
Zhongyi Guo ◽  
...  

Porcine reproductive and respiratory syndrome (PRRS), a significant viral infectious disease that commonly occurs among farmed pigs, leads to considerable economic losses to the swine industry worldwide. Major vault protein (MVP) is a host factor that induces type Ⅰ interferon (IFN) production. In this study, we evaluated the effect of MVP on PRRSV infection in CRL2843CD163 cell lines and porcine alveolar macrophages (PAMs). Our results showed that MVP expression was downregulated by PRRSV infection. Adenoviral overexpression of MVP inhibited PRRSV replication, whereas the siRNA knockdown of MVP promoted PRRSV replication. In addition, MVP knockdown has an adverse effect on the inhibitive role of MVP overexpression on PRRSV replication. Moreover, MVP could induce the expression of type Ⅰ IFNs and IFN-stimulated gene 15 (ISG15) in PRRSV-infected PAMs. Based on these results, MVP may be a potential molecular target of drugs for the effective prevention and treatment of PRRSV infection.


Viruses ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1009
Author(s):  
Hongbin Liu ◽  
Bingjun Shi ◽  
Zhigang Zhang ◽  
Bao Zhao ◽  
Guangming Zhao ◽  
...  

Porcine reproductive and respiratory syndrome virus (PRRSV) has disrupted the global swine industry since the 1980s. PRRSV-host interactions are largely still unknown but may involve host ISG15 protein. In this study, we developed a monoclonal antibody (Mab-3D5E6) specific for swine ISG15 (sISG15) by immunizing mice with recombinant sISG15. A sandwich enzyme-linked immunosorbent assay (ELISA) incorporating this sISG15-specific Mab was developed to detect sISG15 and provided a lower limit of sISG15 detection of 200 pg/mL. ELISA results demonstrated that infection of porcine alveolar macrophages (PAMs) with low-virulence or attenuated PRRSV vaccine strains induced intracellular ISG15 expression that was independent of type I IFN production, while PAMs infection with a PRRSV vaccine strain promoted extracellular ISG15 secretion from infected PAMs. Conversely, the addition of recombinant sISG15 to PAMs mimicked natural extracellular ISG15 effects whereby sISG15 functioned as a cytokine by activating PAMs. Once activated, PAMs could inhibit PRRSV replication and resist infection with PRRSV vaccine strain TJM. In summary, a sandwich ELISA incorporating homemade anti-ISG15 Mab detected ISG15 secretion induced by PAMs infection with a PRRSV vaccine strain. Recombinant ISG15 added to cells exhibited cytokine-like activity that stimulated PAMs to assume an anti-viral state that enabled them to inhibit PRRSV replication and resist viral infection.


2007 ◽  
Vol 73 (6) ◽  
pp. 561-567 ◽  
Author(s):  
J.R. Salameh ◽  
Ladawn M. Talbott ◽  
Warren May ◽  
Bashar Gosheh ◽  
Parminder J.S. Vig ◽  
...  

Incisional hernias represent one of the most common complications of laparotomies. Previous investigations have suggested that a disorder in collagen fiber structure and production level may be an important pathologic cause of abdominal wall hernias. We hypothesized that a cross-examination of multiple extracellular matrix biomarkers might identify underlying defects contributing to the development of hernias. We examined two patient populations: patients with incisional hernias (presenting for hernia repair) and patients with no hernia after previous laparotomy (undergoing a second laparotomy). Patients with previous wound infections, open abdomens, or on steroids were excluded. Fascia samples were obtained from all patients at the time of their second operation and they were studied. Western blots and reverse transcriptase-polymerase chain reaction were used to determine the ratio of type I, III, and IV collagens, as well as matrix metalloproteinase 1 (MMP1) and MMP2 in both groups. Values of P < 0.05 were considered statistically significant. At the protein level, collagen I/III ratio was slightly decreased in patients with incisional hernias compared with those with no hernia, whereas it was significantly decreased at the mRNA transcript level (0.49 vs 1.03, P < 0.01, respectively). The MMP-1 mRNA transcripts were not different in incisional hernia (IH) versus nonincisional hernia, but the MMP-2 level was significantly increased in patients with IH. Reduced collagen I/III and MMP-1/MMP-2 ratios in IH might be consequence of the biological activities between key elements participating in the development of IH after laparotomies. The potential role of MMP-2–specific inhibitors in preventing IH is of significance for future studies.


2020 ◽  
Vol 94 (24) ◽  
Author(s):  
Angke Zhang ◽  
Hong Duan ◽  
Huijun Zhao ◽  
Huancheng Liao ◽  
Yongkun Du ◽  
...  

ABSTRACT Porcine reproductive and respiratory syndrome virus (PRRSV) infection eliminates production of type I interferons (IFNs) in host cells, which triggers an antiviral immune response through the induction of downstream IFN-stimulated genes (ISGs), thus escaping the fate of host-mediated clearance. The IFN-induced transmembrane 3 (IFITM3) has recently been identified as an ISG and plays a pivotal role against enveloped RNA viruses by restricting cell entry. However, the role of IFITM3 in PRRSV replication is unknown. The present study demonstrated that overexpression of IFITM3 suppresses PRRSV replication, while silencing of endogenous IFITM3 prominently promoted PRRSV replication. Additionally, it was shown that IFITM3 undergoes S-palmitoylation and ubiquitination modification, and both posttranslational modifications contribute to the anti-PRRSV activity of IFITM3. Further study showed that PRRSV particles are transported into endosomes and then into lysosomes during the early stages of infection, and confocal microscopy results revealed that PRRSV particles are transported to IFITM3-positive cellular vesicles. By using a single virus particle fluorescent labeling technique, we confirmed that IFITM3 can restrict PRRSV membrane fusion by inducing accumulation of cholesterol in cellular vesicles. Additionally, we found that both endogenous and exogenous IFITM3 are incorporated into newly producing PRRS virions and diminish viral intrinsic infectivity. By using cell coculture systems, we found that IFITM3 effectively restricted PRRSV intercellular transmission, which may have been caused by disrupted membrane fusion and reduced viral infectivity. In conclusion, our results demonstrate, for the first time, that swine IFITM3 interferes with the life cycle of PRRSV, and possibly other enveloped arteritis viruses, at multiple steps. IMPORTANCE Porcine reproductive and respiratory syndrome (PRRS), which is caused by PRRS virus (PRRSV), is of great economic significance to the swine industry. Due to the complicated immune escape mechanisms of PRRSV, there are no effective vaccines or therapeutic drugs currently available against PRRS. Identification of cellular factors and underlying mechanisms that establish an effective antiviral state against PRRSV can provide unique strategies for developing antiviral vaccines or drugs. As an interferon (IFN)-stimulated gene, the role of IFN-induced transmembrane 3 (IFITM3) in PRRSV infection has not been reported as of yet. In the present study, it was shown that IFITM3 can exert a potent anti-PRRSV effect, and PRRS virions are trafficked to IFITM3-containing cell vesicles, where viral membrane fusion is impaired by cholesterol accumulation that is induced by IFITM3. Additionally, both endogenous and exogenous IFITM3 are incorporated into newly assembled progeny virions, and this decreased their intrinsic infectivity.


2004 ◽  
Vol 13 (5-6) ◽  
pp. 343-348 ◽  
Author(s):  
Patricia Méndez Samperio ◽  
Artemisa Trejo ◽  
Elena Miranda

BACKGROUND: The proinflammatory chemokine CXCL10, in addition to its chemotactic properties, is also involved in the stimulation of natural killer and T-cell migration inMycobacterium tuberculosisinfection. In this study, our experiments were designed to determine the role of interferon (IFN)-αβ in the production of CXCL10 by human monocytes infected withMycobacterium bovisbacillus Calmette-Guérin (BCG).Methods: The concentrations of CXCL10 in culture supernatants of monocytes infected withM. bovisBCG were determined by enzyme-linked immunosorbent assay. CXCL10 mRNA levels were determined by the reverse transcription-polymerase chain reaction method.Results: We have shown the induction of CXCL10 following infection withM. bovisBCG in a dose-dependent and time-dependent manner. Importantly, the secretion of CXCL10 in response toM. boviswas increased by IFN-α. These results were further confirmed by the fact that the addition of an anti-IFN-αβ neutralizing antibody completely reversed the stimulatory effect, whereas an isotype-matched control antibody had no significant effect on CXCL10 secretion. It is important to note that no significant effect of type I IFN on CXCL8 production inM. bovis-infected monocytes was observed. This was consistent with the finding by the reverse transcription-polymerase chain reaction method that treatment with anti-IFN-α/β antibodies potentially inhibited CXCL10 mRNA levels, whereas no significant effect was observed on CXCL8 mRNA. Moreover, in THP-1 monocytes and THP-1 macrophages, the addition of exogenous IFN-α stimulated CXCL10 secretion.Conclusions: Collectively, these results indicate that the type I IFN may play an important role to modulate the expression of CXCL10 inM. bovisBCG infection. Studies onM. bovis-induced chemokine secretion could provide important insight into the regulation of the immune response against tuberculosis.


2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Jing Bi ◽  
Shuang Song ◽  
Liurong Fang ◽  
Dang Wang ◽  
Huiyuan Jing ◽  
...  

Porcine reproductive and respiratory syndrome virus (PRRSV) is anArterivirusthat has been devastating the swine industry worldwide since the late 1980s. Previous studies have reported that PRRSV infection induced the production of IL-1β. However, the cellular sensors and signaling pathways involved in this process have not been elucidated yet. Here, we studied the mechanisms responsible for the production of IL-1βin response to highly pathogenic PRRSV. Upon PRRSV infection of primary porcine alveolar macrophages, both mRNA expression and secretion of IL-1βwere significantly increased in a time- and dose-dependent manner. We also investigated the role of several pattern-recognition receptors and adaptor molecules in this response and showed that the TLR4/MyD88 pathway and its downstream signaling molecules, NF-κB, ERK1/2, and p38 MAPKs, were involved in IL-1βproduction during PRRSV infection. Treatment with specific inhibitors or siRNA knockdown assays demonstrated that components of the NLRP3 inflammasome were crucial for IL-1βsecretion but not for IL-1βmRNA expression. Furthermore, TLR4/MyD88/NF-κB signaling pathway was involved in PRRSV-induced expression of NLRP3 inflammasome components. Together, our results deciphered the pathways leading from recognition of PRRSV to the production and release of IL-1β, providing a deeper knowledge of the mechanisms of PRRSV-induced inflammation responses.


2021 ◽  
Author(s):  
Duomeng Yang ◽  
Tingting Geng ◽  
Andrew G. Harrison ◽  
Penghua Wang

AbstractThe retinoic acid-inducible gene I (RIG-I) and melanoma differentiation-associated protein 5 (MDA5) are the major viral RNA sensors that are essential for activation of antiviral immune responses. However, their roles in severe acute respiratory syndrome (SARS)-causing coronavirus (CoV) infection are largely unknown. Herein we investigate their functions in human epithelial cells, the primary and initial target of SARS-CoV-2, and the first line of host defense. A deficiency in MDA5 (MDA5−/−), RIG-I or mitochondrial antiviral signaling protein (MAVS) greatly enhanced viral replication. Expression of the type I/III interferons (IFN) was upregulated following infection in wild-type cells, while this upregulation was severely abolished in MDA5−/− and MAVS−/−, but not in RIG-I−/− cells. Of note, ACE2 expression was ~2.5 fold higher in RIG-I−/− than WT cells. These data demonstrate a dominant role of MDA5 in activating the type I/III IFN response to SARS-CoV-2, and an IFN-independent anti-SARS-CoV-2 role of RIG-I.


Cancers ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 269 ◽  
Author(s):  
Oluwaseun Adebayo Bamodu ◽  
Ching-Kuo Yang ◽  
Wei-Hong Cheng ◽  
David T.W. Tzeng ◽  
Kuang-Tai Kuo ◽  
...  

Background: Colorectal cancer (CRC) remains a leading cause of cancer-related morbidity and mortality in both sexes globally. This is not unconnected with the heterogeneity and plasticity of CRC stem cells (CRC-SCs) which stealthily exploit the niche-related and (epi)genetic factors to facilitate metastasis, chemoresistance, tumor recurrence, and disease progression. Despite the accumulating evidence of the role of dysregulated microRNAs in malignancies, the therapeutic efficacy of pharmacological-targeting of CRC-SC-associated microRNAs is relatively under-explored. Experimental approach: In this present study, we employed relatively new bioinformatics approaches, analyses of microarray data, Western blot, real-time polymerase chain reaction (RT-PCR), and functional assays to show that hsa-miR-324-5p expression is significantly suppressed in CRC cells, and inversely correlates with the aberrant expression of SOD2. Results: This converse hsa-miR-324-5p/SOD2 relationship is associated with enhanced oncogenicity, which is effectively inhibited by 4-acetylantroquinonol B (4-AAQB), as evidenced by inhibited cell viability and proliferation, as well as attenuated migration, invasion, and clonogenicity in 4-AAQB-treated DLD1 and HCT116 cells. Interestingly, 4-AAQB did not affect the viability and proliferation of normal colon cells. We also showed that 4-AAQB-induced re-expression of hsa-miR-324-5p, akin to short-interfering RNA, reduced SOD2 expression, correlates with the concurrent down-regulation of SOD2, N-cadherin, vimentin, c-Myc, and BcL-xL2, with concomitant up-regulation of E-cadherin and BAX2 proteins. Enhanced expression of hsa-miR-324-5p in the CRC cells suppressed their tumorigenicity in vitro and in vivo. Additionally, 4-AAQB synergistically potentiates the FOLFOX (folinate (leucovorin), fluorouracil (5FU), and oxaliplatin) anticancer effect by eliciting the re-expression of SOD2-suppressed hsa-miR-324, and inhibiting SOD2-mediated tumorigenicity. Conclusion: Our findings highlight the pre-clinical anti-CSC efficacy of 4-AAQB, with or without FOLFOX in CRC, and suggest a potential novel therapeutic strategy for CRC patients.


Sign in / Sign up

Export Citation Format

Share Document