Upregulation of circ_0000069 stimulates cervical cancer development by enhancing proliferation, migration, invasion while inhibiting apoptosis through the miR-4429/ZIC2 axis

2020 ◽  
Author(s):  
Hongjuan Yang ◽  
Xiangkun Li ◽  
Xinwei Zhao ◽  
Chang Wang ◽  
Dongyan Qin ◽  
...  

Abstract Background Cervical cancer (CC) is a common female cancer according to global cancer statistics. The current study was used to investigate the regulatory mechanism of circ_0000069 in CC. Methods The real-time quantitative polymerase chain reaction (RT-qPCR) was used to assess circ_0000069, miR-4429, and zinc finger protein of the cerebellum 2 (ZIC2) expression in CC tissues and cells. Kaplan-Meier analysis was performed in CC patients to analyze the relationship between survival time and circ_0000069 expression. The proliferation, apoptosis, cell cycle of CC cells were detected by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl-2H-tetrazol-3-ium bromide (MTT), colony formation, and flow cytometry analyses, respectively. In addition, western blot assay was employed to show expression levels of apoptosis/cell cycle-related proteins, as well as ZIC2. The migration and invasion of CC cells were assessed by transwell analysis. Possible target miRNAs of circ_0000069, along with the interaction between ZIC2 and miR-4429 were confirmed by pull-down and dual-luciferase reporter assays. Eventually, the functional role of circ_0000069 in vivo was clarified with the xenograft experiment in nude mice. Results Circ_0000069 was overexpressed in CC tissues and cells than controls. Furthermore, the silencing of circ_0000069 inhibited proliferation, migration, and invasion while included apoptosis and cell cycle arrest of CC cells, which was overturned by downregulation of miR-4429. Importantly, ZIC2 was a direct target of miR-4429 in CC cells, and we further confirmed that overexpression of miR-4429 suppressed CC progress by decreasing ZIC2 expression in CC cells. Surely, silencing of circ_0000069 inhibited tumorigenesis in vivo. Conclusion Our current results suggested that circ_0000069 exerted its tumorigenic roles by regulation of proliferation, apoptosis, cell cycle, migration, and invasion of CC cells, supporting that circ_0000069/miR-4429/ZIC2 axis may provide potential prognostic biomarkers for CC.

2021 ◽  
Vol 16 (1) ◽  
pp. 1-13
Author(s):  
Weiwei Liu ◽  
Dongmei Yao ◽  
Bo Huang

Abstract Cervical cancer (CC) is a huge threat to the health of women worldwide. Long non-coding RNA plasmacytoma variant translocation 1 gene (PVT1) was proved to be associated with the development of diverse human cancers, including CC. Nevertheless, the exact mechanism of PVT1 in CC progression remains unclear. Levels of PVT1, microRNA-503 (miR-503), and ADP ribosylation factor-like protein 2 (ARL2) were measured by quantitative reverse transcription-polymerase chain reaction or western blot assay. 3-(4,5)-Dimethylthiazole-2-y1)-2,5-biphenyl tetrazolium bromide (MTT) and flow cytometry were used to examine cell viability and apoptosis, respectively. For migration and invasion detection, transwell assay was performed. The interaction between miR-503 and PVT1 or ARL2 was shown by dual luciferase reporter assay. A nude mouse model was constructed to clarify the role of PVT1 in vivo. PVT1 and ARL2 expressions were increased, whereas miR-503 expression was decreased in CC tissues and cells. PVT1 was a sponge of miR-503, and miR-503 targeted ARL2. PVT1 knockdown suppressed proliferation, migration, and invasion of CC cells, which could be largely reverted by miR-503 inhibitor. In addition, upregulated ARL2 could attenuate si-PVT1-mediated anti-proliferation and anti-metastasis effects on CC cells. Silenced PVT1 also inhibited CC tumor growth in vivo. PVT1 knockdown exerted tumor suppressor role in CC progression via the miR-503/ARL2 axis, at least in part.


Open Medicine ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. 1415-1427
Author(s):  
Hui Chen ◽  
Chen Wu ◽  
Liang Luo ◽  
Yuan Wang ◽  
Fangxing Peng

Abstract Background Circular RNAs have been identified as crucial players in the initiation and progression of cancers, including colorectal cancer (CRC). The Has_circ_0000467 (circ_0000467) expression has been found to be upregulated in CRC, but its function and mechanism remain unclear. Methods The expression levels of circ_0000467, microRNA-4766-5p (miR-4766-5p), and Krueppel-like factor 12 (KLF12) were examined using reverse transcription-quantitative polymerase chain reaction. Cell proliferation was analyzed by cell counting kit-8 assay and colony formation assay. The apoptosis was measured by flow cytometry. Transwell migration and invasion assays were applied to evaluate cell metastatic ability. Angiogenesis was detected using tube formation assay. All protein expressions were quantified by western blot assay. Dual-luciferase reporter assay was used to analyze intergenic binding. Xenograft models were constructed for the experiment of circ_0000467 in vivo. Results The expression of circ_0000467 was upregulated in CRC tissues and cells. Knockdown of circ_0000467 repressed cell proliferation, metastasis, and angiogenesis, but it induced apoptosis in CRC cells. circ_0000467 targeted miR-4766-5p and inhibited the expression of miR-4766-5p. Silencing of circ_0000467 inhibited CRC progression by upregulating miR-4766-5p. miR-4766-5p suppressed the expression of target gene KLF12 and KLF12 overexpression reversed the effects of miR-4766-5p on CRC cell behaviors. circ_0000467 positively regulated the expression of KLF12 by targeting miR-4766-5p. circ_0000467 downregulation in vivo reduced CRC tumorigenesis by regulating miR-4766-5p and KLF12. Conclusion circ_0000467 acted as an oncogene in CRC through regulating KLF12 expression by sponging miR-4766-5p. Therefore, circ_0000467 can be used as an effective target in CRC diagnosis and therapy.


Pathobiology ◽  
2021 ◽  
pp. 1-12
Author(s):  
Ling Zhou ◽  
Xiao-li Xu

<b><i>Background:</i></b> Emerging research has demonstrated that long non-coding RNAs (lncRNAs) attach great importance to the progression of cervical cancer (CC). LncRNA ARAP1-AS1 was involved in the development of several cancers; however, its role in CC is far from being elucidated. <b><i>Methods:</i></b> Real-time PCR (RT-PCR) was employed to detect ARAP1-AS1 and miR-149-3p expression in CC samples. CC cell lines (HeLa and C33A cells) were regarded as the cell models. The biological effect of ARAP1-AS1 on cancer cells was measured using CCK-8 assay, colony formation assay, flow cytometry, Transwell assay and wound healing assay in vitro, and subcutaneous xenotransplanted tumor model and tail vein injection model in vivo. Furthermore, interactions between ARAP1-AS1 and miR-149-3p, miR-149-3p and POU class 2 homeobox 2 (POU2F2) were determined by bioinformatics analysis, qRT-PCR, Western blot, luciferase reporter and RNA immunoprecipitation assay, respectively. <b><i>Results:</i></b> The expression of ARAP1-AS1 was enhanced in CC samples, while miR-149-3p was markedly suppressed. Additionally, ARAP1-AS1 overexpression enhanced the viability, migration, and invasion of CC cells. ARAP1-AS1 downregulated miR-149-3p via sponging it. ARAP1-AS1 and miR-149-3p exhibited a negative correlation in CC samples. On the other hand, ARAP1-AS1 enhanced the expression of POU2F2, which was validated as a target gene of miR-149-3p. <b><i>Conclusion:</i></b> ARAP1-AS1 was abnormally upregulated in CC tissues and indirectly modulated the POU2F2 expression via reducing miR-149-3p expression. Our study identified a novel axis, ARAP1-AS1/miR-149-3p/POU2F2, in CC tumorigenesis.


Author(s):  
He Zhu ◽  
Hongwei Zhang ◽  
Youliang Pei ◽  
Zhibin Liao ◽  
Furong Liu ◽  
...  

Abstract Background Hepatocellular carcinoma (HCC) is a common type of malignant human cancer with high morbidity and poor prognosis, causing numerous deaths per year worldwide. Growing evidence has been demonstrated that long non-coding RNAs (lncRNAs) are closely associated with hepatocarcinogenesis and metastasis. However, the roles, functions, and working mechanisms of most lncRNAs in HCC remain poorly defined. Methods Real-time quantitative polymerase chain reaction (qRT-PCR) was used to detect the expression level of CCDC183-AS1 in HCC tissues and cell lines. Cell proliferation, migration and invasion ability were evaluated by CCK-8 and transwell assay, respectively. Animal experiments were used to explore the role of CCDC183-AS1 and miR-589-5p in vivo. Bioinformatic analysis, dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay were performed to confirm the regulatory relationship between CCDC183-AS1, miR-589-5p and SKP1. Results Significantly upregulated expression of CCDC183-AS1 was observed in both HCC tissues and cell lines. HCC patients with higher expression of CCDC183-AS1 had a poorer overall survival rate. Functionally, overexpression of CCDC183-AS1 markedly promoted HCC cell proliferation, migration and invasion in vitro and tumor growth and metastasis in vivo, whereas the downregulation of CCDC183-AS1 exerted opposite effects. MiR-589-5p inhibitor counteracted the proliferation, migration and invasion inhibitory effects induced by CCDC183-AS1 silencing. Mechanistically, CCDC183-AS1 acted as a ceRNA through sponging miR-589-5p to offset its inhibitory effect on the target gene SKP1, then promoted the tumorigenesis of HCC. Conclusions CCDC183-AS1 functions as an oncogene to promote HCC progression through the CCDC183-AS1/miR-589-5p/SKP1 axis. Our study provided a novel potential therapeutic target for HCC patients.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Chen Wang ◽  
Shiqing Shao ◽  
Li Deng ◽  
Shelian Wang ◽  
Yongyan Zhang

Abstract Background Radiation resistance is a major obstacle to the prognosis of cervical cancer (CC) patients. Many studies have confirmed that long non-coding RNAs (lncRNAs) are involved in the regulation of radiosensitivity of cancers. However, whether small nucleolar RNA host gene 12 (SNHG12) regulates the radiosensitivity of CC remains unknown. Methods Quantitative real-time polymerase chain reaction was used to measure the expression levels of SNHG12 and microRNA-148a (miR-148a). The radiosensitivity of cells was evaluated by clonogenic assay. Flow cytometry and caspase-3 activity assay were performed to assess the apoptosis ability and cell cycle distribution of cells. Besides, dual-luciferase reporter and RNA immunoprecipitation assay were used to verify the interaction between miR-148a and SNHG12 or cyclin-dependent kinase 1 (CDK1). Also, the protein levels of CDK1, CCND1 and γ-H2AX were detected by western blot analysis. Furthermore, in vivo experiments were conducted to verify the effect of SNHG12 on CC tumor growth. Ki-67 and TUNEL staining were employed to evaluate the proliferation and apoptosis rates in vivo. The hematoxylin and eosin (HE) staining were employed to evaluate the tumor cell morphology. Results SNHG12 was upregulated in CC tissues and cells, and its knockdown improved the radiosensitivity by promoting the radiation-induced apoptosis and cell cycle arrest of CC cells. Also, miR-148a could be sponged by SNHG12 and could target CDK1. MiR-148a inhibitor or CDK1 overexpression could invert the promotion effect of silenced-SNHG12 on CC radiosensitivity. Meanwhile, SNHG12 interference reduced the tumor growth of CC, increased miR-148a expression, and inhibited CDK1 level in vivo. Conclusion LncRNA SNHG12 promoted CDK1 expression to regulate the sensitivity of CC cells to radiation through sponging miR-148a, indicating that SNHG12 could be used as a potential biomarker to treat the radiotherapy resistance of CC patients.


2016 ◽  
Vol 26 (5) ◽  
pp. 817-824 ◽  
Author(s):  
Quan Zhou ◽  
Ling R. Han ◽  
Yang X. Zhou ◽  
Yan Li

ObjectiveMicroRNAs (miRNAs) play crucial roles in cervical cancer development and progression. The purposes of this study were to investigate the role of miR-195 in cervical cancer and clarify the regulation of Smad3 by miR-195.MethodsQuantitative real-time polymerase chain reaction was used to examine miR-195 expression in cervical cancer tissues and cell lines. The clinicopathological significance of miR-195 down-regulation was further analyzed. Transwell migration and invasion assays were performed. A luciferase reporter assay was conducted to confirm the target gene of miR-195, and the results were validated in cervical cancer tissues and cell lines.ResultsMiR-195 was significantly decreased in clinical tissues and cervical cancer cell lines. The low miR-195 level was significantly correlated with higher International Federation of Gynecology and Obstetrics stage, node metastasis, and deep stromal invasion. Up-regulation of miR-195 suppressed cell migration and invasion in vitro. Smad3 was verified as a direct target of miR-195, which was further confirmed by the inverse expression of miR-195 and Smad3 in patients’ specimens.ConclusionsThe newly identified miR-195/Smad3 pathway provides an insight into cervical cancer metastasis and may represent a novel therapeutic target.


2020 ◽  
Author(s):  
Yixuan Yang ◽  
Bing Zhu ◽  
Zhaofeng Ning ◽  
Xiaodong Wang ◽  
Zhaoxia Li ◽  
...  

Abstract Background: Esophageal squamous cell carcinoma (ESCC) is an aggressive malignancy with a high incidence and poor prognosis. The document of circular RNAs (circRNAs) is frequently associated with cancer development. This study intended to explore the functional mechanism of circ_DLG1 in ESCC.Methods: The expression of circ_DLG1, miR-338-3p and Mitogen-Activated Protein Kinase Kinase Kinase 9 (MAP3K9) was measured by quantitative real-time polymerase chain reaction (qRT-PCR). Cell cycle, proliferation, migration and invasion were performed for functional analysis using flow cytometry, 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) and transwell assay, respectively. The protein levels of MAP3K9, p38, phosphor p38 (p-p38), ERK1/2, phosphor ERK1/2 (p-ERK1/2) were detected by western blot. Bioinformatics tool for target prediction used the online tool starBase. Dual-luciferase reporter assay was performed to verify the target relationship. The animal experiments were performed to ascertain the role of circ_DLG1 in vivo.Results: The expression of circ_DLG1 was elevated in ESCC tissues, plasma and cells. Circ_DLG1 knockdown inhibited cell cycle, proliferation, migration and invasion. MAP3K9 was highly expressed in ESCC tissues and cells, and its overexpression rescued the effects of circ_DLG1 knockdown. MiR-338-3p was a link between circ_DLG1 and MAP3K9, and circ_DLG1 regulated the expression of MAP3K9 by targeting miR-338-3p. The MAPK/ERK pathway was involved in the circ_DLG1/miR-338-3p/MAP3K9 regulatory axis. Circ_DLG1 knockdown blocked the tumor growth in vivo by regulating miR-338-3p and MAP3K9.Conclusion: Circ_DLG1 contributed to the malignant progression of ESCC by mediating the miR-338-3p/MAP3K9 axis via activating the MAPK/ERK signaling pathway. This paper provided a novel action mode of circ_DLG1 in ESCC.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Li Fan ◽  
Hai Li ◽  
Yun Zhang

Abstract Background Accumulating evidence has associated aberrant long non-coding RNAs (lncRNAs) with various human cancers. This study aimed to explore the role of LINC00908 in prostate cancer (PCa) and its possible underlying mechanisms. Methods Microarray data associated with PCa were obtained from the Gene Expression Omnibus (GEO) to screen the differentially expressed genes or lncRNAs. Then, the expression of LINC00908 in PCa tissues and cell lines was detected by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The localization of LINC00908 in PCa cells was examined by fluorescence in situ hybridization (FISH). The relationship among LINC00908, microRNA (miR)-483-5p, and TSPYL5 was detected by bioinformatics analysis, dual-luciferase reporter assay, RNA pull-down, RNA binding protein immunoprecipitation (RIP), and FISH assays. Cell biological behaviors were assessed after the expression of LINC00908, miR-483-5p, and TSPYL5 was altered in PCa cells. Lastly, tumor growth in nude mice was evaluated. Results Poorly expressed LINC00908 was witnessed in PCa tissues and cells. LINC00908 competitively bound to miR-483-5p to up-regulate the TSPYL5 expression. Overexpression of LINC00908 resulted in reduced PCa cell proliferation, migration and invasion, and promoted apoptosis. Additionally, the suppression on PCa cell proliferation, migration and invasion was induced by up-regulation of TSPYL5 or inhibition of miR-483-5p. In addition, in vivo experiments showed that overexpression of LINC00908 inhibited tumor growth of PCa. Conclusion Overall, LINC00908 could competitively bind to miR-483-5p to increase the expression of TSPYL5, thereby inhibiting the progression of PCa. Therefore, LINC00908 may serve as a novel target for the treatment of PCa.


2018 ◽  
Vol 48 (1) ◽  
pp. 173-184 ◽  
Author(s):  
Jiamei Liu ◽  
Danbo Wang ◽  
Zaiqiu Long ◽  
Jing Liu ◽  
Weishan Li

Background/Aims: Circular RNAs (circRNAs) play a significant role in the development and progression of various human cancers. However, the expression and function of circRNAs in cervical cancer (CC) have rarely been explored. The aim of this study was to investigate the biological function of circRNA8924 in CC and elucidate the possible molecular mechanism involved. Methods: Quantitative polymerase chain reaction was used to determine mRNA expression of circRNA8924, miR-518d-5p/519-5p and CBX8 in CC tissues and cells. CBX8 protein expression was measured by Western blotting. The CCK-8 assay was used to evaluate cell proliferation, and the transwell assay to determine cell migration and invasion. The luciferase reporter assay was used to determine the direct regulation of miR-518d-5p/519-5p and circRNA8924 or CBX8 Results: The study demonstrated that the expression level of circRNA8924 in CC was significantly higher than that in the adjacent normal tissues (P < 0.001), and that it was also associated with tumor size, FIGO staging and myometrial invasion. The knockdown of circRNA8924 significantly inhibited the proliferation, migration and invasion of CC cells SiHa and HeLa. The expression level of miR-518d-5p/519-5p was negatively correlated with circRNA8924, and circRNA8924 regulated CBX8 by competitively binding to miR-518d-5p/519-5p. Conclusions: CircRNA8924 is highly expressed in CC tissue and can be considered a competitive endogenous RNA of the miR-518d-5p/519-5p family to promote the malignant biological behavior of CC cells. It is suggested that it may serve as a new biomarker for CC diagnosis and disease progression and provide potential targets for targeted therapy.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Zhenhua Du ◽  
Lei Wang ◽  
Yu Xia

Abstract Background Ovarian cancer (OC) is the gynecologic cancer with the highest mortality. Circular RNAs (circRNAs) play a vital role in the development and progression of cancer. This study aimed to explore the potential role of circ_0015756 in OC and its molecular mechanism. Methods The levels of circ_0015756, microRNA-942-5p (miR-942-5p) and Cullin 4B (CUL4B) were determined by quantitative real-time PCR (qRT-PCR) or Western blot assay. Cell proliferation, apoptosis, migration and invasion were assessed by Cell Counting Kit-8 (CCK-8), colony formation assay, flow cytometry and transwell assay. The levels of proliferation-related and metastasis-related proteins were measured by Western blot assay. The relationship between miR-942-5p and circ_0015756 or CUL4B was verified by dual-luciferase reporter assay, RNA immunoprecipitation assay and RNA pull-down assay. Xenograft assay was used to analyze tumor growth in vivo. Results Circ_0015756 and CUL4B levels were increased, while miR-942-5p level was decreased in OC tissues and cells. Depletion of circ_0015756 suppressed proliferation, migration and invasion and promoted apoptosis in OC cells. Down-regulation of circ_0015756 hindered OC cell progression via modulating miR-942-5p. Also, up-regulation of miR-942-5p impeded OC cell development by targeting CUL4B. Mechanistically, circ_0015756 up-regulated CUL4B via sponging miR-942-5p. Moreover, circ_0015756 silencing inhibited tumor growth in vivo. Conclusion Knockdown of circ_0015756 suppressed OC progression via regulating miR-942-5p/CUL4B axis, suggesting that circ_0015756 might be a potential therapeutic target for ovarian cancer.


Sign in / Sign up

Export Citation Format

Share Document