scholarly journals Demethylation of Secreted Frizzled-Related Protein2( SFRP2) Promoter Upregulates Wnt/β-Catenin Activity in Endometriosis

Author(s):  
Mei Yang ◽  
Chunfan Jiang ◽  
Lin Li ◽  
Xiaojie Huang ◽  
Hui Xing ◽  
...  

Abstract Wnt/β-catenin signalling contributes to the metastasis and invasion in the etiology and pathogenesis of endometriosis (EMS), but why the WNT pathway is dysregulated in EMS remains unclear. This study aimed to explore the effects of demethylation of SFRP2 promoter on the Wnt/β-catenin activity in EMS. Aberrantly methylated-differentially expressed genes were identified from GEO database microarray data. 5 ectopic endometrium and 5 normal endometrium were get, subsequently, ectopic endometrium epithelial cells (EEECs) and normal endometrium epithelial cells (NEECs) were isolated in vitro. MSP, BSP, luciferase reporter assay, Lentivirus infection of high expression of SFRP2 gene vector, low expression of DNMT1 gene vector, and 5-Aza stimulation, RT-PCR and western blot were performed in the tissues or cells. It was found that compared with the normal endometrium and NEECs, the RNA and protein expression levels of SFRP2 were significantly increased while the SFRP2 promoter was demethylated in ectopic endometrium and EEECs. The 5-Aza treatment significantly upregulated SFRP2 mRNA and protein levels in EEECs. Furthermore, after the knockdown of DNMT1 expression, the demethylation of the SFRP2 promoter and upregulation of SFRP2 mRNA and protein in EEECs were observed. Meanwhile, the expression of lentivirus carrying SFRP2 cDNA up-regulates the activity of Wnt signaling and the protein expression of β-catenin in EEECs. In summary, the increased SFRP2 expression-induced Wnt/β-catenin signaling due to the demethylation of the SFRP2 promoter plays an important role in the pathogenesis of EMS, suggesting that SFRP2 might be a therapeutic target for EMS treatment.

2021 ◽  
Vol 21 (02) ◽  
Author(s):  
Linxun Liu

ABSTRACT This study analyzed functions of miR-34a and SIRT1 in modulating efficacy of Olaparib in pancreatic cancer in vitro. RNA expressions of miR-34a and SIRT1 were evaluated through RT-qPCR in HPDE6-C7, SW1990, PANC-1 and MIA PaCa-2 cells. MiR-34a was promoted in cancer cell lines while SIRT1 was decreased. Luciferase reporter assay verified bindings between miR-34a and SIRT1. Moreover, E-cadherin was promoted by miR-34a mimics and SIRT1 suppression while N-cadherin and Vimentin were both downregulated. Additionally, PARP1 protein expression was increased after miR- 34a promotion and SIRT1 downregulation. Besides that, PARP1 protein levels and EMT were significantly inhibited after treated by Olaparib (0, 0.5, 1 and 1.5ìM). In Olaparib-treated cancer cells, SIRT1, PARP1 and EMT were all distinctly decreased after SIRT1 suppression and overexpression of miR-34a induced much lower level of SIRT1.


2012 ◽  
Vol 87 (5) ◽  
pp. 709-713 ◽  
Author(s):  
Carlos Alberto de Carvalho Fraga ◽  
Marcos Vinicius Macedo de Oliveira ◽  
Lucas Rodrigues Alves ◽  
Agostinho Gonçalves Viana ◽  
Adriana Alkmin de Sousa ◽  
...  

BACKGROUND: Leishmaniasis is one of the most important infectious diseases worldwide. Our study can provide more knowledge about angiogenic and hypoxic events in leishmaniasis. We attempted to verify whether the HIF-1 α protein expression may be associated to VEGF-A, VEGFR2 and MMP9 in leishmanial lesions. OBJECTIVES: Besides understanding the pathway, we performed the correlation of VEGF-A, VEGFR2 and MMP9 proteins. METHODS: In this study, we gathered 54 paraffin blocks taken from skin lesions in patients from northern Minas Gerais, Brazil, with confirmed diagnosis of tegumentary leishmaniasis. Immunohistochemistry was used to evaluate the expression of the proteins. The expression of HIF-1α was categorized into two groups according to the median: HIF-1 α lower and HIF-1 α higher. RESULTS: We observed increase of VEGFR2 and MMP9 protein expressions in HIF-1 α higher group of epithelial cells. Spearman analyses in epithelial cells showed correlation between VEGF-A and MMP9, VEGFR2 and MMP9 protein expression. CONCLUSIONS: HIF-1 α higher group showed increase of VEGFR2 and MMP9 proteins. In epithelial cells, VEGF-A was correlated to MMP9 protein. Furthermore, considering leukocyte cells, VEGFR2 was negatively correlated to MMP9 protein levels. This pathway possibly prepares the cells for a higher activity in a hypoxic or an angiogenic microenvironment. Other in vitro and in vivo studies may clarify the activation mechanism and the response from the proteins HIF-1 α, VEGFR2 and MMP-9 in tegumentary leishmaniasis.


2020 ◽  
Vol 48 (4) ◽  
pp. 030006052091843 ◽  
Author(s):  
Licong Shen ◽  
Xiaxia Hong ◽  
Yang Liu ◽  
Wenjun Zhou ◽  
Yi Zhang

Objective The transcription factor Specificity protein 1 (Sp1) plays important roles in many critical biological functions; however, its expression and underlying functions in endometriosis remain undefined. Bioinformatics has suggested that Sp1 is potentially regulated by miR-25-3p. This study investigated Sp1 and miR-25-3p expression and their interaction during the pathogenesis of endometriosis. Methods Fifteen women with American Fertility Society stage III/IV ovarian endometriosis and 14 disease-free controls were included. Sp1 expression was detected by qPCR, immunohistochemistry, and western blotting. Using both bioinformatics and genetics, we identified that Sp1 was a potential target of miR-25-3p. Then, the relationship between miR-25-3p and Sp1 was investigated by knockdown and overexpression experiments. Results Sp1 mRNA and protein levels were increased in ectopic and eutopic endometrium compared with normal endometrium samples, with the highest expression in ectopic endometrium samples. In vitro experiments and luciferase reporter assays demonstrated that Sp1 was upregulated when miR-25-3p was depleted and that Sp1 was a direct target of miR-25-3p, respectively. Conclusions Our study revealed increased Sp1 expression in ovarian endometriosis and subsequently demonstrated that miR-25-3p directly targets Sp1. This suggests a novel miRNA/Sp1 pathway in the pathogenesis of endometriosis, which should be further explored for other potential therapeutic targets.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ruowu Liu ◽  
Jintao Du ◽  
Jiao Zhou ◽  
Bing Zhong ◽  
Luo Ba ◽  
...  

BackgroundCRSwNP is an inflammatory disease but the mechanism is not yet fully understood. MiR-21, a member of miRNAs, has been reported to play roles in mediating inflammation. However, the expression of miR-21 and its role in patients with CRSwNP remain elusive.MethodsTurbinates from control subjects, uncinate processes from CRSsNP, polyp tissues from CRSwNP, and nasal epithelial cells brushed from nasal mucosa were collected. The expression of miR-21 and cytokines in nasal tissues and epithelial cells were detected by qPCR. The localization of miR-21 was detected by ISH, and its target was identified by bioinformation analysis, qPCR, IHC, WB, and luciferase reporter system. The protein and mRNA of PDCD4 and NF-κB P65 were determined by WB and qPCR after miR-21 transfection in HNEpC. The role of miR-21 on cytokines was analyzed in HNEpC and nasal polyp explants.ResultsMiR-21 was upregulated in CRSwNP relative to control subjects by qPCR, which was determined mainly in nasal epithelial cells of CRSwNP by ISH. Both pro-inflammation cytokines (IL-1β, IL-6, IL-8, IL-25, and TSLP) and a suppressive cytokine (IL-10) were overexpressed in the epithelial cells of CRSwNP. The expression of miR-21 was positively correlated with IL-10 and negatively correlated with IL-6, IL-8, IL-33, and TSLP in the epithelial cells of CRSwNP. As a potential target of miR-21, the expression of PDCD4 was negatively correlated with miR-21 in CRSwNP. In HNEpC, miR-21 could reduce the expression of PDCD4 at both mRNA and protein levels, and bioinformation analysis and luciferase reporter system confirmed PDCD4 as one target of miR-21. Furthermore, miR-21 could decrease the activation of NF-κB and increase IL-10 mRNA. Both SEB and LPS could elevate miR-21, with IL-25, IL-33, TSLP induced by SEB and IL-1β, IL-6, IL-8 induced by LPS, while the miR-21 could regulate the expression of IL-33, TSLP, IL-1β, IL- 6 and IL-8 in vitro and ex vivo. Clinically, miR-21 expression was inversely correlated with the Lund-Mackay CT scores and the Lund-Kennedy scores in CRSwNP.ConclusionMiR-21 could be a prominent negative feedback factor in the inflammation process to attenuate the expression of pro-inflammatory cytokines, thereby playing an anti-inflammation role in CRSwNP.


Author(s):  
Haiyun Sun ◽  
Chong Wang ◽  
Ying Zhou ◽  
Xingbo Cheng

Objective: Diabetic cardiomyopathy (DCM) is an important complication of diabetes. This study was attempted to discover the effects of long noncoding RNA OIP5-AS1 (OIP5-AS1) on the viability and oxidative stress of cardiomyocyte in DCM. Methods: The expression of OIP5-AS1 and microRNA-34a (miR-34a) in DCM was detected by qRT-PCR. In vitro, DCM was simulated by high glucose (HG, 30 mM) treatment in H9c2 cells. The viability of HG (30 mM)-treated H9c2 cells was examined by MTT assay. The reactive oxygen species (ROS), superoxide dismutase (SOD) and malondialdehyde (MDA) levels were used to evaluate the oxidative stress of HG (30 mM)-treated H9c2 cells. Dual-luciferase reporter assay was used to confirm the interactions among OIP5-AS1, miR-34a and SIRT1. Western blot was applied to analyze the protein expression of SIRT1. Results: The expression of OIP5-AS1 was down-regulated in DCM, but miR-34a was up-regulated. The functional experiment stated that OIP5-AS1 overexpression increased the viability and SOD level, while decreased the ROS and MDA levels in HG (30 mM)-treated H9c2 cells. The mechanical experiment confirmed that OIP5-AS1 and SIRT1 were both targeted by miR-34a with the complementary binding sites at 3′UTR. MiR-34a overexpression inhibited the protein expression of SIRT1. In the feedback experiments, miR-34a overexpression or SIRT1 inhibition weakened the promoting effect on viability, and mitigated the reduction effect on oxidative stress caused by OIP5-AS1 overexpression in HG (30 mM)-treated H9c2 cells. Conclusions: OIP5-AS1 overexpression enhanced viability and attenuated oxidative stress of cardiomyocyte via regulating miR-34a/SIRT1 axis in DCM, providing a new therapeutic target for DCM.


Author(s):  
Zhibin Liao ◽  
Hongwei Zhang ◽  
Chen Su ◽  
Furong Liu ◽  
Yachong Liu ◽  
...  

Abstract Background Aberrant expressions of long noncoding RNAs (lncRNAs) have been demonstrated to be related to the progress of HCC. The mechanisms that SNHG14 has participated in the development of HCC are obscure. Methods Quantitative real-time PCR (qRT-PCR) was used to measure the lncRNA, microRNA and mRNA expression level. Cell migration, invasion and proliferation ability were evaluated by transwell and CCK8 assays. The ceRNA regulatory mechanism of SNHG14 was evaluated by RNA immunoprecipitation (RIP) and dual luciferase reporter assay. Tumorigenesis mouse model was used to explore the roles of miR-876-5p in vivo. The protein levels of SSR2 were measured by western blot assay. Results In this study, we demonstrated that SNHG14 was highly expressed in HCC tissues, meanwhile, the elevated expression of SNHG14 predicted poor prognosis in patients with HCC. SNHG14 promoted proliferation and metastasis of HCC cells. We further revealed that SNHG14 functioned as a competing endogenous RNA (ceRNA) for miR-876-5p and that SSR2 was a downstream target of miR-876-5p in HCC. Transwell, CCK8 and animal experiments exhibited miR-876-5p inhibited HCC progression in vitro and in vivo. By conducting rescue experiments, we found the overexpression of SSR2 or knocking down the level of miR-876-5p could reverse the suppressive roles of SNHG14 depletion in HCC. Conclusion SNHG14 promotes HCC progress by acting as a sponge of miR-876-5p to regulate the expression of SSR2 in HCC.


Viruses ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 308
Author(s):  
Ying-Ray Lee ◽  
Chia-Ming Chang ◽  
Yuan-Chieh Yeh ◽  
Chi-Ying F. Huang ◽  
Feng-Mao Lin ◽  
...  

Honeysuckle (Lonicera japonica Thunb) is a traditional Chinese medicine (TCM) with an antipathogenic activity. MicroRNAs (miRNAs) are small non-coding RNA molecules that are ubiquitously expressed in cells. Endogenous miRNA may function as an innate response to block pathogen invasion. The miRNA expression profiles of both mice and humans after the ingestion of honeysuckle were obtained. Fifteen overexpressed miRNAs overlapped and were predicted to be capable of targeting three viruses: dengue virus (DENV), enterovirus 71 (EV71) and SARS-CoV-2. Among them, let-7a was examined to be capable of targeting the EV71 RNA genome by reporter assay and Western blotting. Moreover, honeysuckle-induced let-7a suppression of EV71 RNA and protein expression as well as viral replication were investigated both in vitro and in vivo. We demonstrated that let-7a targeted EV71 at the predicted sequences using luciferase reporter plasmids as well as two infectious replicons (pMP4-y-5 and pTOPO-4643). The suppression of EV71 replication and viral load was demonstrated in two cell lines by luciferase activity, RT-PCR, real-time PCR, Western blotting and plaque assay. Furthermore, EV71-infected suckling mice fed honeysuckle extract or inoculated with let-7a showed decreased clinical scores and a prolonged survival time accompanied with decreased viral RNA, protein expression and virus titer. The ingestion of honeysuckle attenuates EV71 replication and related pathogenesis partially through the upregulation of let-7a expression both in vitro and in vivo. Our previous report and the current findings imply that both honeysuckle and upregulated let-7a can execute a suppressive function against the replication of DENV and EV71. Taken together, this evidence indicates that honeysuckle can induce the expression of let-7a and that this miRNA as well as 11 other miRNAs have great potential to prevent and suppress EV71 replication.


2021 ◽  
Vol 20 ◽  
pp. 153303382098011
Author(s):  
Junjun Shu ◽  
Ling Xiao ◽  
Sanhua Yan ◽  
Boqun Fan ◽  
Xia Zou ◽  
...  

Objective: Ovarian cancer (OC) ranks one of the most prevalent fatal tumors of female genital organs. Aberrant promoter methylation triggers changes of microRNA (miR)-375 in OC. Our study aimed to evaluate the mechanism of methylated miR-375 promoter region in OC cell malignancy and to seek the possible treatment for OC. Methods: miR-375 promoter methylation level in OC tissues and cells was detected. miR-375 expression in OC tissues and cell lines was compared with that in demethylated cells. Role of miR-375 in OC progression was measured. Dual-luciferase reporter gene assay was utilized to verify the targeting relationship between miR-375 and Yes-associated protein 1 (YAP1). Then, Wnt/β-catenin pathway-related protein expression was tested. Moreover, xenograft transplantation was applied to confirm the in vitro experiments. Results: Highly methylated miR-375 was seen in OC tissues and cell lines, while its expression was decreased as the promoter methylation increased. Demethylation in OC cells brought miR-375 back to normal level, with obviously declined cell invasion, migration and viability and improved apoptosis. Additionally, miR-375 targeted YAP1 to regulate the Wnt/β-catenin pathway protein expression. Overexpressed YAP1 reversed the protein expression, promoted cell invasion, migration and viability while reduced cell apoptosis. Overexpressed miR-375 in vivo inhibited OC progression. Conclusion: Our study demonstrated that demethylated miR-375 inhibited OC growth by targeting YAP1 and downregulating the Wnt/β-catenin pathway. This investigation may offer novel insight for OC treatment.


2017 ◽  
Vol 37 (6) ◽  
Author(s):  
Guochao Sun ◽  
Ying Lu ◽  
Yingxia Li ◽  
Jun Mao ◽  
Jun Zhang ◽  
...  

miRNAs have been implicated in processing of cardiac hypoxia/reoxygenation (H/R)-induced injury. Recent studies demonstrated that miR-19a might provide a potential cardioprotective effect on myocardial disease. However, the effect of miR-19a in regulating myocardial ischemic injury has not been previously addressed. The present study was to investigate the effect of miR-19a on myocardial ischemic injury and identified the potential molecular mechanisms involved. Using the H/R model of rat cardiomyocytes H9C2 in vitro, we found that miR-19a was in low expression in H9C2 cells after H/R treatment and H/R dramatically decreased cardiomyocyte viability, and increased lactate dehydrogenase (LDH) release and cardiomyocyte apoptosis, which were attenuated by co-transfection with miR-19a mimic. Dual-luciferase reporter assay and Western blotting assay revealed that PTEN was a direct target gene of miR-19a, and miR-19a suppressed the expression of PTEN via binding to its 3′-UTR. We further identified that overexpression of miR-19a inhibited the expression of PTEN at the mRNA and protein levels. Moreover, PTEN was highly expressed in H/R H9C2 cells and the apoptosis induced by H/R was associated with the increase in PTEN expression. Importantly, miR-19a mimic significantly increased p-Akt levels under H/R. In conclusion, our findings indicate that miR-19a could protect against H/R-induced cardiomyocyte apoptosis by inhibiting PTEN /PI3K/p-Akt signaling pathway.


Sign in / Sign up

Export Citation Format

Share Document