scholarly journals The Effect of the Upregulated Expression of Fe Regulators IMA1 and bHLH104 in Arabidopsis on the Root Length and Fe Homeostasis Under Pi Starvation

Author(s):  
Xiangxiang Meng ◽  
Wenfeng Li ◽  
Renfang Shen ◽  
Ping Lan

Abstract Phosphate (Pi) and iron (Fe) are two essential mineral nutrients for plant growth and development. Pi starvation triggers the Fe local redistribution and over-accumulation, resulting in the reduction of the primary root, while represses the expression of Fe uptake genes. Nevertheless, the antagonistic mechanism between P and Fe nutrition in plant remain not addressed. Here, the effect of the upregulated expression of Fe regulators IMA1 and bHLH104 driven by the different-type promoters (proCaMV 35S, the promoters of Pi-starvation responsive genes proIPS1 and proPHT1;4) in response to Pi starvation was investigated in Arabidopsis. The results showed that the expression of Fe uptake genes IRT1 and FRO2 was successfully upregulated in proIPS1::IMA1, proPHT1;4::IMA1 and proIPS1::bHLH104 under Pi starvation while decreased in pro35S::IMA1, pro35S::bHLH104 and proPHT1;4::bHLH104, compared with that in the corresponding plants under Pi sufficiency. Although the length and Fe distribution in roots of them didn’t have significant difference with wild type under Pi starvation, the Fe distribution and total Fe contents were significantly increased in shoots of proIPS1::IMA1, proPHT1;4::IMA1 and proIPS1::bHLH104 while were decreased in proPHT1;4::bHLH104. The higher Fe concentrations in the Pi-starved transgenic plants also conferred the obviously tolerance to Fe deficiency. Their biomasses and total P concentrations showed no difference with wild type, regardless of Pi sufficiency or deficiency. Therefore, this approach would be a novel manipulation to modify Fe nutrient via coupling with Pi starvation in plants.

Genetics ◽  
2002 ◽  
Vol 161 (3) ◽  
pp. 1247-1255 ◽  
Author(s):  
Eiji Nambara ◽  
Masaharu Suzuki ◽  
Suzanne Abrams ◽  
Donald R McCarty ◽  
Yuji Kamiya ◽  
...  

Abstract The plant hormone abscisic acid (ABA) controls many aspects of plant growth and development under a diverse range of environmental conditions. To identify genes functioning in ABA signaling, we have carried out a screen for mutants that takes advantage of the ability of wild-type Arabidopsis seeds to respond to (−)-(R)-ABA, an enantiomer of the natural (+)-(S)-ABA. The premise of the screen was to identify mutations that preferentially alter their germination response in the presence of one stereoisomer vs. the other. Twenty-six mutants were identified and genetic analysis on 23 lines defines two new loci, designated CHOTTO1 and CHOTTO2, and a collection of new mutant alleles of the ABA-insensitive genes, ABI3, ABI4, and ABI5. The abi5 alleles are less sensitive to (+)-ABA than to (−)-ABA. In contrast, the abi3 alleles exhibit a variety of differences in response to the ABA isomers. Genetic and molecular analysis of these alleles suggests that the ABI3 transcription factor may perceive multiple ABA signals.


CORD ◽  
1998 ◽  
Vol 14 (02) ◽  
pp. 34
Author(s):  
Zosimo S. Bonaobra III ◽  
Erlinda P. Rillo ◽  
Osmundo D. Orense

The effect of different brands of activated charcoal [Merck GR (Art. 2186), Sigma acid washed (C‑4386), Sigma neutralized (C‑3790), and Duchefa neutralized (C‑1302)] on growth and development ofcoconut zygotic embryos in vitro was evaluated. Analysis of data noted after one month revealed that there was no significant difference on percentage germination, shoot length, and number ofprimary root of cv. Laguna Tall embryos cultured in Y3 liquid medium supplemented with 2.5gll AC of different brands. Length of primary root of embryos cultured in Duchefa neutralized AC was significantly different from those in Sigma neutralized AC only after one month from initial culture. For the succeeding periods (2‑4 months), no significant difiference was observed among the treatments in terms of increment in plant height, number of scale and true leaves and length ofprimary root. Statistical analysis revealed thatpercentage ofseedlings with primary, secondary and tertiary roots did not differ significantly among the treatments 1‑4 months from initial culture. Results suggest that any brand (even alternately) can be used satisfactorily in the in vitro culture of coconut embryos.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e10961
Author(s):  
Bin Tan ◽  
Liu Yan ◽  
Huannan Li ◽  
Xiaodong Lian ◽  
Jun Cheng ◽  
...  

Background Heat shock factors (HSFs) play important roles during normal plant growth and development and when plants respond to diverse stressors. Although most studies have focused on the involvement of HSFs in the response to abiotic stresses, especially in model plants, there is little research on their participation in plant growth and development or on the HSF (PpHSF) gene family in peach (Prunus persica). Methods DBD (PF00447), the HSF characteristic domain, was used to search the peach genome and identify PpHSFs. Phylogenetic, multiple alignment and motif analyses were conducted using MEGA 6.0, ClustalW and MEME, respectively. The function of PpHSF5 was confirmed by overexpression of PpHSF5 into Arabidopsis. Results Eighteen PpHSF genes were identified within the peach genome. The PpHSF genes were nonuniformly distributed on the peach chromosomes. Seventeen of the PpHSFs (94.4%) contained one or two introns, except PpHSF18, which contained three introns. The in silico-translated PpHSFs were classified into three classes (PpHSFA, PpHSFB and PpHSFC) based on multiple alignment, motif analysis and phylogenetic comparison with HSFs from Arabidopsis thaliana and Oryza sativa. Dispersed gene duplication (DSD at 67%) mainly contributed to HSF gene family expansion in peach. Promoter analysis showed that the most common cis-elements were the MYB (abiotic stress response), ABRE (ABA-responsive) and MYC (dehydration-responsive) elements. Transcript profiling of 18 PpHSFs showed that the expression trend of PpHSF5 was consistent with shoot length changes in the cultivar ‘Zhongyoutao 14’. Further analysis of the PpHSF5 was conducted in 5-year-old peach trees, Nicotiana benthamiana and Arabidopsis thaliana, respectively. Tissue-specific expression analysis showed that PpHSF5 was expressed predominantly in young vegetative organs (leaf and apex). Subcellular localization revealed that PpHSF5 was located in the nucleus in N. benthamiana cells. Two transgenic Arabidopsis lines were obtained that overexpressed PpHSF5. The root length and the number of lateral roots in the transgenic seedlings were significantly less than in WT seedlings and after cultivation for three weeks. The transgenic rosettes were smaller than those of the WT at 2–3 weeks. The two transgenic lines exhibited a dwarf phenotype three weeks after transplanting, although there was no significant difference in the number of internodes. Moreover, the PpHSF5-OE lines exhibited enhanced thermotolerance. These results indicated that PpHSF5 might be act as a suppresser of growth and development of root and aerial organs.


Author(s):  
Ikuo Takahashi ◽  
Tsuyoshi Ota ◽  
Tadao Asami

Abstract Hydroxycinnamic acid amides (HCAAs) are involved in various developmental processes as well as in biotic and abiotic stress responses. Among them, the presence of spermidine derivatives, such as N1,N8-di(coumaroyl)-spermidine and N1,N8-di(sinapoyl)-spermidine, and their biosynthetic genes have been reported in Arabidopsis, but their functions in plants are still unknown. We chemically synthesized the above mentioned spermidine derivatives to assess their physiological functions in Arabidopsis. We evaluated the growth and development of chemically treated Arabidopsis and demonstrated that these compounds inhibited seed germination, hypocotyl elongation, and primary root growth, which could be due to modulation of plant hormone homeostasis and signaling. The results suggest that these compounds are regulatory metabolites that modulate plant growth and development.


Molecules ◽  
2019 ◽  
Vol 24 (17) ◽  
pp. 3146 ◽  
Author(s):  
Weigui Luo ◽  
Yuan Xiao ◽  
Qiwen Liang ◽  
Yi Su ◽  
Langtao Xiao

Small signaling peptides (SSPs) are a class of short peptides playing critical roles in plant growth and development. SSPs are also involved in the phytohormone signaling pathway. However, identification of mature SSPs is still a technical challenge because of their extremely low concentrations in plant tissue and complicated interference by many other metabolites. Here, we report an optimized protocol to extract SSPs based on protoplast extraction and to analyze SSPs based on tandem mass spectrometry peptidomics. Using plant protoplasts as the material, soluble peptides were directly extracted into phosphate buffer. The interference of non-signaling peptides was significantly decreased. Moreover, we applied the protocol to identify potential SSPs in auxin treated wild type and auxin biosynthesis defective mutant yuc2yuc6. Over 100 potential SSPs showed a response to auxin in Arabidopsis thaliana.


2020 ◽  
Vol 71 (19) ◽  
pp. 5896-5910 ◽  
Author(s):  
Jie Zang ◽  
Yanqing Huo ◽  
Jie Liu ◽  
Huairen Zhang ◽  
Juan Liu ◽  
...  

Abstract Iron (Fe) is an essential micronutrient and plays an irreplaceable role in plant growth and development. Although its uptake and translocation are important biological processes, little is known about the molecular mechanism of Fe translocation within seed. Here, we characterized a novel small kernel mutant yellow stripe like 2 (ysl2) in maize (Zea mays). ZmYSL2 was predominantly expressed in developing endosperm and was found to encode a plasma membrane-localized metal–nicotianamine (NA) transporter ZmYSL2. Analysis of transporter activity revealed ZmYSL2-mediated Fe transport from endosperm to embryo during kernel development. Dysfunction of ZmYSL2 resulted in the imbalance of Fe homeostasis and abnormality of protein accumulation and starch deposition in the kernel. Significant changes of nitric oxide accumulation, mitochondrial Fe–S cluster content, and mitochondrial morphology indicated that the proper function of mitochondria was also affected in ysl2. Collectively, our study demonstrated that ZmYSL2 had a pivotal role in mediating Fe distribution within the kernel and kernel development in maize.


2021 ◽  
Vol 22 (15) ◽  
pp. 8270
Author(s):  
Xin Qi ◽  
Wensi Tang ◽  
Weiwei Li ◽  
Zhang He ◽  
Weiya Xu ◽  
...  

Plant G proteins are versatile components of transmembrane signaling transduction pathways. The deficient mutant of heterotrimeric G protein leads to defects in plant growth and development, suggesting that it regulates the GA pathway in Arabidopsis. However, the molecular mechanism of G protein regulation of the GA pathway is not understood in plants. In this study, two G protein β subunit (AGB1) mutants, agb1-2 and N692967, were dwarfed after exogenous application of GA3. AGB1 interacts with the DNA-binding domain MYB62, a GA pathway suppressor. Transgenic plants were obtained through overexpression of MYB62 in two backgrounds including the wild-type (MYB62/WT Col-0) and agb1 mutants (MYB62/agb1) in Arabidopsis. Genetic analysis showed that under GA3 treatment, the height of the transgenic plants MYB62/WT and MYB62/agb1 was lower than that of WT. The height of MYB62/agb1 plants was closer to MYB62/WT plants and higher than that of mutants agb1-2 and N692967, suggesting that MYB62 is downstream of AGB1 in the GA pathway. qRT-PCR and competitive DNA binding assays indicated that MYB62 can bind MYB elements in the promoter of GA2ox7, a GA degradation gene, to activate GA2ox7 transcription. AGB1 affected binding of MYB62 on the promoter of GA2ox7, thereby negatively regulating th eactivity of MYB62.


Plants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1172
Author(s):  
Oyeyemi O. Ajayi ◽  
Michael A. Held ◽  
Allan M. Showalter

Arabinogalactan proteins (AGPs) contain arabinogalactan (AG) polysaccharides that are biologically relevant to plant growth processes. Here, the biochemical and physiological roles of three Golgi localized β-glucuronosyltransferase genes (GLCAT14A, GLCAT14B and GLCAT14C) in Arabidopsis thaliana, responsible for the addition of glucuronic acid to AG chains, were further investigated using single, double and triple glcat14 mutant plants. These proteins were localized to the Golgi apparatus when transiently expressed in Nicotiana benthamiana. Sugar analysis of AGP extracts from Arabidopsis stem, leaf and siliques showed a consistent reduction in glucuronic acid in glcat14 mutants relative to wild type, with concomitant effects resulting in tissue-specific alterations, especially in arabinose and galactose sugars. Although we observed defects in trichome branching in glca14a/b and glca14a/b/c mutants, scanning electron microscope analysis/energy dispersive microanalysis (SEM/EDX) showed no difference in the calcium content of trichomes in these mutants relative to wild type. Immunoblot analyses of the stem and leaf showed a reduction in AGPs as detected with the LM2 antibody in glcat14a/b and glcat14a/b/c mutants relative to wild type. The current work exemplifies the possibility of conducting structure-function assessment of cell wall biosynthetic genes to identify their physiological roles in plant growth and development.


2018 ◽  
Vol 19 (9) ◽  
pp. 2744 ◽  
Author(s):  
Lin Chen ◽  
Tiantian Cao ◽  
Jin Zhang ◽  
Yonggen Lou

Gibberellins (GAs) play pivotal roles in plant growth and development, and in defenses against pathogens. Thus far, how the GA-mediated signaling pathway regulates plant defenses against herbivores remains largely unknown. In this study, we cloned the rice GA receptor gene OsGID1, whose expression was induced by damage from the brown planthopper (BPH) Niaparvata lugens, mechanical wounding, and treatment with salicylic acid (SA), but not jasmonic acid. The overexpression of OsGID1 (oe-GID1) decreased BPH-induced levels of SA, H2O2, and three SA-pathway-related WRKY transcripts, but enhanced BPH-induced levels of ethylene. Bioassays in the laboratory revealed that gravid BPH females preferred to feed and lay eggs on wild type (WT) plants than on oe-GID1 plants. Moreover, the hatching rate of BPH eggs on oe-GID1 plants was significantly lower than that on WT plants. In the field, population densities of BPH adults and nymphs were consistently and significantly lower on oe-OsGID1 plants than on WT plants. The increased resistance in oe-GID1 plants was probably due to the increased lignin level mediated by the GA pathway, and to the decrease in the expression of the three WRKY genes. Our findings illustrated that the OsGID1-mediated GA pathway plays a positive role in mediating the resistance of rice to BPH.


2019 ◽  
Vol 61 (3) ◽  
pp. 596-605 ◽  
Author(s):  
Yuki Aoi ◽  
Keita Tanaka ◽  
Sam David Cook ◽  
Ken-Ichiro Hayashi ◽  
Hiroyuki Kasahara

Abstract Auxin is the first discovered plant hormone and is essential for many aspects of plant growth and development. Indole-3-acetic acid (IAA) is the main auxin and plays pivotal roles in intercellular communication through polar auxin transport. Phenylacetic acid (PAA) is another natural auxin that does not show polar movement. Although a wide range of species have been shown to produce PAA, its biosynthesis, inactivation and physiological significance in plants are largely unknown. In this study, we demonstrate that overexpression of the CYP79A2 gene, which is involved in benzylglucosinolate synthesis, remarkably increased the levels of PAA and enhanced lateral root formation in Arabidopsis. This coincided with a significant reduction in the levels of IAA. The results from auxin metabolite quantification suggest that the PAA-dependent induction of GRETCHEN HAGEN 3 (GH3) genes, which encode auxin-amido synthetases, promote the inactivation of IAA. Similarly, an increase in IAA synthesis, via the indole-3-acetaldoxime pathway, significantly reduced the levels of PAA. The same adjustment of IAA and PAA levels was also observed by applying each auxin to wild-type plants. These results show that GH3 auxin-amido synthetases can alter the ratio of IAA and PAA in plant growth and development.


Sign in / Sign up

Export Citation Format

Share Document