Integrated Analysis of Helicobacter Pylori-Related Prognostic Gene Modification Patterns in the Tumour Microenvironment of Gastric Cancer

Author(s):  
Ye Wang ◽  
kaitian Zheng ◽  
Jiancheng Wang ◽  
congjun Wang ◽  
Junqiang Chen

Abstract Background Helicobacter pylori (HP) infection is one of the leading causes of gastric cancer (GC). However, the interaction between HP and the TME, and its carcinogenic mechanism remains unknown. Methods We screened 28 HP-related prognostic genes based on HP infection-related gene markers and HP infection sample datasets (GSE6143 and GSE60662). We then constructed an HPscore system by using the principal component analysis algorithm and successfully quantified the HP modification characteristics of a single GC sample. In addition, we comprehensively analysed the relationship between the HPscore and the clinical characteristics of patients with GC, the immune cell infiltration characteristics of the TME and stemness. Results We successfully identified 28 HP-related prognostic genes that accurately classified the GC population. There are significant differences in survival between different subgroups(high-, low-risk and cluster_1,2). Thereafter, we constructed the HPscore system to systematically evaluate the modification characteristics of the 28 HP-related prognostic genes, and the internal and external validation of the HPscore system suggested similar results: the overall survival rate in the high -HPscore group was poor, and immunological surveillance was reduced, whereas the low-HPscore group had a survival advantage, and was related to the inflammatory response. HPscore was also strongly correlated with the tumour stage, TME cell infiltration and stemness. Conclusions HP-modified characteristics play a crucial role in the TME and tumourigenesis. HPscore evaluation of a single tumour sample can help identify the TME characteristics and the carcinogenic mechanism of GC patients infected with HP, based on which personalised treatment can be administered.

2021 ◽  
Vol 11 ◽  
Author(s):  
Quan Jiang ◽  
Jie Sun ◽  
Hao Chen ◽  
Chen Ding ◽  
Zhaoqing Tang ◽  
...  

The immune microenvironment plays a critical role in tumor biology. The molecular profiles of immune components and related genes are of tremendous value for the study of primary resistance to immune checkpoint blockers (ICBs) for gastric cancer (GC) and serve as prognostic biomarkers to predict GC survival. Recent studies have revealed that tumor immune cell infiltration (ICI) is an indicator of the survival and responsiveness to chemotherapy in GC patients. Here, we describe the immune cell landscape based on the ESTIMATE and CIBERSORT algorithms to help separate GC into 3 ICI clusters using the unsupervised clustering method. Further in-depth analyses, such as differential expression gene (DEG) analysis and principal component analysis (PCA), help to establish an ICI scoring system. A low ICI score is characterized by an increased tumor mutation burden (TMB). The combination of the ICI score and TMB score better predicts the survival of GC patients. Analyses based on public and our own database revealed that the ICI scoring system could also help predict the survival and chemotherapy responsiveness of GC patients. The present study demonstrated that the ICI score may be an effective prognostic biomarker and predictive indicator for chemotherapy and immunotherapy.


2021 ◽  
Author(s):  
Xiaoyan Li ◽  
Jing Zhou ◽  
Jie He

Abstract Background: Sarcoidosis (SA) is an immune disorder disease featured with granulomas formation. The work purposed to uncover potential markers for sarcoidosis (SA) diagnosis and explore how immune cell infiltration contributes to the pathogenesis of SA.Methods: Sarcoidosis GSE83456 samples and GSE42834 from Gene Expression Omnibus (GEO) were analyzed as the training and external validation sets, respectively. R statistical software was employed to uncover the differentially expressed genes (DEGs) of GSE83456. SVM algorithms and LASSO logistic regression were applied for screening and verification of the diagnostic markers for key module genes. The infiltration of immune cells in sarcoidosis patients’ blood samples was assessed by CIBERSORT. The expression of serum BATF2 and PDK4 was detected by RT-qPCR method, and the value of BATF2 and PDK4 mRNA expression in the diagnosis of pulmonary sarcoidosis was analyzed.Results: In total, 580 DEGs were identified from the key module. PDK4 (AUC=0.942) and BATF4 (AUC=0.980) were revealed as diagnostic markers of sarcoidosis. We found that monocytes, T cells regulatory (Tregs), mast cells, macrophages,NK cells, and dendritic cells may contribute to sarcoidosis development. In addition, PDK4 and BATF4 were closely associated with these immune cells. BATF2 and PDK4 were highly expressed in pulmonary sarcoidosis. BATF2 and PDK4 combined to predict the area under the ROC curve of pulmonary sarcoidosis was 0.922.Conclusions: PDK4 and BATF4 could be used as diagnostic markers of sarcoidosis, and immune cell infiltration severs an important role in sarcoidosis.


2014 ◽  
Vol 32 (3_suppl) ◽  
pp. 46-46
Author(s):  
Sophie Earle ◽  
Toru Aoyama ◽  
Alexander I. Wright ◽  
Darren Treanor ◽  
Yohei Miyagi ◽  
...  

46 Background: Since the ACTS-GC trial, Japanese patients with stage II/III gastric cancer (GC) receive adjuvant S1 chemotherapy. However, selection of patients (pts) by TNM stage does not predict benefit from adjuvant S1 with certainty. Thus, there is an urgent clinical need to identify predictive biomarkers. Increasing evidence suggests tumor immune cell infiltration may be related to GC pts prognosis. We tested the hypothesis that extent and type of immune cell infiltration in GC is related to benefit from adjuvant chemotherapy. Methods: Tissue microarrays from 252 GC resections (109 pts treated by surgery alone (S), 143 pts treated by surgery and adjuvant S1 chemotherapy (SC)) from the Kanagawa Cancer Center Hospital (Yokohama, Japan) were investigated by immunohistochemistry for common leucocytes antigen (CD45), neutrophils (CD66b), macrophages (CD68 and CD163), T-cell subtypes (CD45R0, CD8, CD3), B-cells (CD20) and Treg cells (FOXP3). Staining was quantified as percentage immunoreactivity/area by automated image analysis. Relationship with overall survival was analyzed. A Cox regression model was used to identify independent prognostic markers and treatment interaction effect. Results: The hazard ratio of S1 was 0.694 in this GC cohort which is similar to the results of the ACTS-GC trial. CD45 and CD45R0 were independent prognostic markers in the S group only (CD45 p=0.032, CD45R0 p=0.003). A treatment interaction effect was seen for CD45, CD45R0, and CD68 (p value for test of interaction: CD45 p=0.062, CD45R0 p=0.082, CD68 p=0.057). Survival in the SC group was significantly poorer compared to the S group for CD45>56% or CD68>7% (p<0.05). Conclusions: This is the first study to investigate the relationship between tumor immune cell infiltration at time of surgery and benefit from adjuvant chemotherapy. Our results indicate that GC patients with high intratumoral levels of CD68, CD45, or CD45R0 positive immune cells might not benefit from adjuvant S1 chemotherapy. These findings require validation in a second independent dataset before conducting a prospective study stratifying patients with stage II/III GC based upon extent of CD45, CD45R0, or CD68 immune cell infiltration for adjuvant treatment.


Author(s):  
Fuwen Yao ◽  
Yongqiang Zhan ◽  
Zuhui Pu ◽  
Ying Lu ◽  
Jiao Chen ◽  
...  

Gastric cancer (GC) is a malignant disease of the digestive tract and a life-threatening disease worldwide. Ferroptosis, an iron-dependent cell death caused by lipid peroxidation, is reported to be highly correlated with gastric tumorigenesis and immune cell activity. However, the underlying relationship between ferroptosis and the tumor microenvironment in GC and potential intervention strategies have not been unveiled. In this study, we profiled the transcriptome and prognosis data of ferroptosis-related genes (FRGs) in GC samples of the TCGA-STAD dataset. The infiltrating immune cells in GC were estimated using the CIBERSORT and XCELL algorithms. We found that the high expression of the hub FRGs (MYB, PSAT1, TP53, and LONP1) was positively correlated with poor overall survival in GC patients. The results were validated in an external GC cohort (GSE62254). Further immune cell infiltration analysis revealed that CD4+ T cells were the major infiltrated cells in the tumor microenvironment of GC. Moreover, the hub FRGs were significantly positively correlated with activated CD4+ T cell infiltration, especially Th cells. The gene features in the high-FRG score group were enriched in cell division, DNA repair, protein folding, T cell receptor, Wnt and NIK/NF-kappaB signaling pathways, indicating that the hub FRGs may mediate CD4+ T cell activation by these pathways. In addition, an upstream transcriptional regulation network of the hub FRGs by lncRNAs was also developed. Three lncRNAs (A2M-AS1, C2orf27A, and ZNF667-AS1) were identified to be related to the expression of the hub FRGs. Collectively, these results showed that lncRNA A2M-AS1, C2orf27A, and ZNF667-AS1 may target the hub FRGs and impair CD4+ T cell activation, which finally leads to poor prognosis of GC. Effective interventions for the above lncRNAs and the hub FRGs can help promote CD4+ T cell activation in GC patients and improve the efficacy of immunotherapy. These findings provide a novel idea of GC immunotherapy and hold promise for future clinical application.


2020 ◽  
Author(s):  
Xiaotao Jiang ◽  
Kunhai Zhuang ◽  
Kailin Jiang ◽  
Yi Wen ◽  
Linling Xie ◽  
...  

Abstract Background: With the coming of immunotherapy era, immunotherapy is gradually playing a vital role in the treatment of gastric cancer (GC). However, immune microenvironment in gastric precancerous lesions (GPL) and early gastric cancer (EGC) still remain largely unknown. Methods: From the Gene Expression Omnibus (GEO), data of three GPL-related gene expression profiles (GSE55696, GSE87666 and GSE130823) and three GC data sets with clinical information (GSE66229, GSE15459 and GSE34942) were downloaded. Three GC data were consolidated as a GC meta-GEO cohort. RNA sequencing data of 375 stomach adenocarcinoma (STAD) samples with clinical information from The Cancer Genome Atlas (TCGA) and 175 stomach normal controls (NC) from Genotype-Tissue Expression (GTEx) datasets were obtained from the UCSC Xena browser, which were merged as a STAD TCGA-GTEx cohort. The abundance of immune cells in above datasets were estimated using Immune Cell Abundance Identifier (ImmuCellAI) algorithm. Firstly, key immune cells associated with GPL progression to EGC were identified using one‐way analysis of variance (ANOVA) test as well as Spearman’s correlation test in two GPL and EGC related datasets (GSE55696 and GSE87666). Then, weighted gene co-expression analysis (WGCNA) and pathway enrichment were adopted to identify hub gene co-expression network. Candidate hub genes were identified based on network parameters. Combining expression comparison and prognosis analysis in STAD TCGA-GTEx and GC meta-GEO cohort, Genes with significant difference between GC and NC and prognostic significance were identified as real hub genes. Correlation between real hub genes and key immune cells was evaluated using Pearson’s correlation test. The pattern of key immune cells infiltration and hub genes expression as well as their correlation during GPL progression to EGC were validated in an independent cohort GSE130823. The correlation was also verified in the GC datasets (STAD TCGA-GTEx and GC meta-GEO cohort).Results: Combining with GSE55696 and GSE87666 cohorts, NKT cell was found gradually decreased with GPL progression and negatively correlated with tumorigenesis significantly. It was identified as the key immune cell associated with GPL progression to EGC based on one-way ANOVA test and Spearman’s correlation test. Further verification indicated that it was significantly downregulated in GC in meta-GEO cohort and STAD TCGA-GTEx cohort. According to the results of WGCNA and KEGG pathway enrichment, green modules in GSE55696 and GSE87666 cohorts were considered as hub modules as they were negatively associated with NKT cell infiltration at a significant level and their overlapping genes were significantly enriched in immune-related pathways. In further screening, CXCR4 was found to be significantly upregulated in GC and had a poor prognosis, which was determined as the real hub gene. CXCR4 expression was found increased with GPL progression, positively correlated with tumorigenesis and negatively correlated with NKT cell infiltration significantly. The pattern of NKT cell infiltration and CXCR4 expression as well as their relationship stay consistent in the independent GPL cohort GSE130823. The negative correlation of CXCR4 with NKT cell infiltration was also confirmed in GC datasets (GC meta-GEO cohort and STAD TCGA-GTEx cohort).Conclusion: CXCR4 and NKT cell are possible to serve as biomarkers in monitoring GPL progression to EGC. Besides, CXCR4 may be involved in regulating NKT cell infiltration during GPL progression to EGC, which may provide a new immunotherapeutic target.


2020 ◽  
Author(s):  
Li Li ◽  
Shanshan Huang ◽  
Yangyang Yao ◽  
Jun Chen ◽  
Junhe Li ◽  
...  

Abstract Background: Follistatin-like 1 (FSTL1) plays a central role in the progression of tumor and tumor immunity. However, the effect of FSTL1 on the prognosis and immune infiltration of gastric cancer (GC) remains to be elucidated.Method: The expression of FSTL1 data was analyzed in Oncomine and TIMER databases. Analyses of clinical parameters and survival data were conducted by Kaplan-Meier plotter and immunohistochemistry. Western blot assay and real‐time quantitative PCR (RT-qPCR) was using to analyzed protein and mRNA expression, respectively. The correlations between FSTL1 and cancer immune infiltrates was analyzed by Tumor Immune Estimation Resource (TIME), Gene Expression Profiling Interactive Analysis (GEPIA) and LinkedOmics database.Results: The expression of FSTL1 was significantly higher in GC tissues than in normal tissues, and bioinformatic analysis and Immunohistochemistry (IHC) indicated that high FSTL1 expression significantly correlated with poor prognosis in GC. Moreover, FSTL1 was predicted as an independent prognostic factor in GC patients. Bioinformatics analysis results suggested that FSTL1 mainly involved in tumor progression and tumor immunity. And significant correlations were found between FSTL1 expression and immune cell infiltration in GC.Conclusion: The study effectively revealed useful information about FSTL1 expression, prognostic values, potential functional networks and impact of tumor immune infiltration in GC. In summary, FSTL1 can be used as a biomarker for prognosis and evaluating immune cell infiltration in GC.


2020 ◽  
Author(s):  
Xiaotao Jiang ◽  
Kunhai Zhuang ◽  
Kailin Jiang ◽  
Yi Wen ◽  
Linling Xie ◽  
...  

Abstract Background Immune microenvironment in gastric precancerous lesions (GPL) and early gastric cancer (EGC) still remain largely unknown. This study aims to identify key immune cells and hub genes associated with GPL progression to EGC. Methods Immune Cell Abundance Identifier (ImmuCellAI) algorithm was used to quantify the proportions of immune cells of GPL and GC samples based on gene expression profiles. Key immune cells associated with GPL progression to EGC were identified using one‐way analysis of variance (ANOVA) test and Spearman’s correlation test. Weighted gene co-expression analysis (WGCNA) and pathway enrichment were adopted to identify hub gene co-expression network and hub genes associated with the key immune cells infiltration. The pattern of key immune cells infiltration, hub genes expression and their correlation were verified in an independent GPL-EGC cohort and GC datasets.Results NKT cell was found gradually decreased during GPL progression to EGC and negatively correlated with tumorigenesis. According to WGCNA and hub genes screening, CXCR4, having a poor prognosis, increased with GPL progression, positively correlated with tumorigenesis and negatively correlated with NKT cell infiltration significantly, was identified as the real hub gene. The negative correlation between CXCR4 and NKT cell infiltration was successfully verified in an independent GPL-EGC cohort and GC datasets.Conclusion CXCR4 and NKT cell are possible to serve as biomarkers in monitoring GPL progression to EGC. Besides, CXCR4 may be involved in regulating NKT cell infiltration during GPL progression to EGC, which may provide a new immunotherapeutic target.


2022 ◽  
Vol 20 (1) ◽  
Author(s):  
Junyu Huo ◽  
Ge Guan ◽  
Jinzhen Cai ◽  
Liqun Wu

Abstract Background Stromal cells in tumor microenvironment could promote immune escape through a variety of mechanisms, but there are lacking research in the field of gastric cancer (GC). Methods We identified differential expressed immune-related genes (DEIRGs) between the high- and low-stromal cell abundance GC samples in The Cancer Genome Atlas and GSE84437 datasets. A risk score was constructed basing on univariate cox regression analysis, LASSO regression analysis, and multivariate cox regression analysis in the training cohort (n=772). The median value of the risk score was used to classify patients into groups with high and low risk. We conducted external validation of the prognostic signature in four independent cohorts (GSE26253, n=432; GSE62254, n=300; GSE15459, n=191; GSE26901, n=109) from the Gene Expression Omnibus (GEO) database. The immune cell infiltration was quantified by the CIBERSORT method. Results The risk score contained 6 genes (AKT3, APOD, FAM19A5, LTBP3, NOV, and NOX4) showed good performance in predicting 5-year overall survival (OS) rate and 5-year recurrence-free survival (RFS) rate of GC patients. The risk death and recurrence of GC patients growing with the increasing risk score. The patients were clustered into three subtypes according to the infiltration of 22 kinds of immune cells quantified by the CIBERSORT method. The proportion of cluster A with the worst prognosis in the high-risk group was significantly higher than that in the low-risk group; the risk score of cluster C subtype with the best prognosis was significantly lower than that of the other two subtypes. Conclusion This study established and validated a robust prognostic model for gastric cancer by integrated analysis 1804 samples of six centers, and its mechanism was explored in combination with immune cell infiltration characterization.


2021 ◽  
Vol 12 ◽  
Author(s):  
XiongHui Rao ◽  
JianLong Jiang ◽  
ZhiHao Liang ◽  
JianBao Zhang ◽  
ZheHong Zhuang ◽  
...  

Background: CLDN10, an important component of the tight junctions of epithelial cells, plays a crucial role in a variety of tumors. The effect of CLDN10 expression in gastric cancer, however, has yet to be elucidated.Methods: Differential expression of CLDN10 at the mRNA and protein levels was evaluated using Oncomine, ULCAN, HPA and TIMER2.0 databases. Real-time polymerase chain reaction (RT-PCR) was utilized to further verify the expression of CLDN10 in vitro. Correlations between CLDN10 expression and clinical outcomes of gastric cancer were explored by Kaplan-Meier Plotter. Gene set enrichment analysis (GSEA) and protein-protein interaction (PPI) were performed via LinkedOmics and GeneMANIA. The correlations between CLDN10 expression and immune cell infiltration and somatic copy number alternations (SCNA) in gastric cancer were explored by TIMER2.0 and GEPIA2.0.Results: CLDN10 expression was lower in gastric cancer compared to adjacent normal tissues, and associated with better prognosis. CLDN10 also showed significant differences at different T stages, Lauren classification, treatments and HER2 status. PPI and GSEA analysis showed that CLDN10 might be involved in signal transmission, transmembrane transport and metabolism. In some major immune cells, low expression of CLDN10 was associated with increased levels of immune cell infiltration. In addition, it was found that different SCNA status in CLDN10 might affect the level of immune cell infiltration. Furthermore, the expression of CLDN10 was significantly associated with the expression of several immune cell markers, especially B cell markers, follicular helper T cell (Tfh) markers and T cell exhaustion markers.Conclusion: Down-regulated CLDN10 was associated with better overall survival (OS) in gastric cancer. And CLDN10 may serve as a potential prognostic biomarker and correlate to immune infiltration levels in gastric cancer.


Sign in / Sign up

Export Citation Format

Share Document