Signals In Temperature Extremes Emerge in China During The Last Millennium Based On CMIP5 and CMIP6 Simulations

Author(s):  
Yue Sui ◽  
Yuting Chen

Abstract Though the magnitude of any change is important, regions which have a larger signal of change relative to the background variations will potentially face greater risks than other regions, as they will see unusual or novel climate conditions more quickly (Frame et al. 2017). Providing more information about signal and noise on regional scales, and the associated attribution to particular causes, is therefore important for adaptation planning (Chen et al. 2021). However, whether a detectable signal in temperature extremes emerges in China at the local or regional level during 850−2005 has not been discussed. Based on six selected and bias-corrected global models under the Coupled Model Intercomparison Project phase 5, relative to pre-industrial levels (ca 1850), we show that the temporal information of signal-to-noise ratio (S/N) in annual temperature extremes are consistent with annual mean temperature variations in China during 850−2005. Before 1850, absolute values of regional mean S/N in temperature extremes under cold climatic conditions are generally larger than that under warm climatic conditions. At the level of S/N > 1, local increasing signals of cold extremes emerge in the second half of 13th century and in the early 19th century after intensively volcanic eruptions in 1257 and 1815 in most part of China, especially in southern China and Tibet Plateau. Over the past 150 years under global warming, absolute values of regional mean S/N in temperature extremes have increasing trends. The regional mean increasing signals of warm extremes over China begin to exceed natural variability in 1969 at the level of S/N > 1, and local warm signals first occur in 1929 in Tibet Plateau. These warming signals are related to greenhouse gas forcing.

2015 ◽  
Vol 723 ◽  
pp. 395-399
Author(s):  
Ning Li ◽  
Xue Yan Zhou ◽  
Yu Xiang Tian ◽  
Peng Wei Liu

Permafrostregions have harsh climate conditions, continuous low temperature, abrupt cooling, large temperature difference, winds, etc. It has an extremely obvious influencetoasphalt pavement structures and materials. Take Lhasa-Gongga airport highway as an example to analyze the low temperature cracking problem of asphalt pavement caused by the climatic conditions. Using finite element method to contrast and analyze the thermal stresses variation of different asphalt layer, and recommend suitable asphalt pavement structure for Qinghai-Tibet plateau permafrost regions.The results indicate that the thermal stresses of asphalt layer gradually reduce along with the thickness direction of structure, moment of maximum and minimum value also been delayed and thermal stresses of base cause is fairly few. It can reduce thermal stresses of base cause and asphalt layer effectively while using the AC-25, and 4cmAC13 + 6cmAC20 + 8cmAC25 is recommended for Lhasa-Gonggaairport highway pavement structure type.


2021 ◽  
Author(s):  
Nazimul Islam ◽  
Torsten Vennemann ◽  
Stuart N. Lane

<p>Original dendrochronological research has developed rapidly over the last few decades to cover a wide range of environmental reconstruction, not only mean climate conditions but also climate extremes (e.g. floods, droughts) and other environmental hazards (e.g. landslides, debris flows, sea-level rise, volcanic eruptions). Similarly, the focus has expanded its geographical coverage from the temperate and high latitudes to lower latitudes (e.g.  the Himalaya, Tibet Plateau). Analysis of the two main dedicated dendrochronology journals (Dendrochronologia (2002-) and Tree Ring Research (2015-)) shows that the focus of the majority of published papers has been temperate and high latitudes and many fewer have considered lower latitudes such as the Himalaya. This may be due to the long-lasting controversy and doubt of the existence of tree-rings in lower latitude trees and the lower scientific acceptance of seasonal tree growth in such regions. However, such regions have some of the most preferred tree species (e.g. Larix griffithii, Abies spectabilis, Betula utilis, Juniperus polycarpos etc) for dendrochronological analysis making them suitable for tree-ring research and for answering questions regarding century-scale and longer environmental changes in regions with a relatively short history of instrumented recording of environmental parameters.</p><p>Perhaps the most interesting development in tree ring research is the realization that tree cellulose can be used to acquire information not only of climatic significance but also hydrological significance, by using environmental isotopes. To date, despite of being one of the most climate and geopolitically sensitive regions, the Himalaya has got very less or no attention for combined research of isotopes and anatomical analysis of tree rings. Based on its huge significance, it is critical to combine these two methods to allow us to make linkages between historical climate fluctuations and associated hydrological response. In this poster, we present the conception of a project to do this in a large catchment (4264 km<sup>2</sup>) in the Sikkim Himalaya with the purpose to understand how climate change is simultaneously impacting both water-related risks and water-related resources and crucially how far downstream which is highly significant as millions of people living downstream get freshwater from the seasonal snow and glacier-melt in this part of the Himalayas.</p>


2020 ◽  
Author(s):  
James Head ◽  
Lionel Wilson

<p>Sulfur is transported to the surface and released in  volcanic effusive and explosive eruptions and is known to be concentrated in both time (acidic aqueous alteration environments in Late Noachian-Early Hesperian) and space (e.g., Valles Marineris-type layered deposits). Requirements necessary for formation, evolution and preservation of sulfates are highly specific due to high sulfate solubility and environmental sensitivity of sulfates to phase transitions (temperature and humidity). Can explosive volcanic eruptions under martian conditions help account for the characteristics of sulfate units in the Valles Marineris Interior Layered Deposits (VM-ILD)?</p><p>As a basis for understanding the nature of volcanic eruptions in the martian environment (e.g., low gravity, currently low and historically evolving atmospheric pressure) we developed a theoretical and predictive framework for the generation, ascent and eruption of magma. We have: 1) shown that basaltic plinian eruptions are highly favored (relative to Earth), 2) explored the characteristics/dispersal of tephra/gases in various locations and Patm conditions, and 3) assessed the behavior/fate of S species during eruptions including the role of sulfuric acid precipitates in surface melting and creation of aqueous acidic environments.</p><p>Observations consistent with volcanic eruptions under martian conditions accounting for characteristics of units in the VM-ILD include: 1) Volcanism is focused in Tharsis; 2) Explosive plinian basaltic volcanism is favored in general, and with increasing altitude (Tharsis) and decreasing Patm (time); 3) Finer ash is produced relative to Earth, enhancing dispersal; 4) Fine ash creates a profusion of nucleation sites for condensation of co-erupted water and S species; 5) Airfall products are tephra coated with condensed water and S species, producing extensive layered/graded deposits; 6) Tephra distribution is latitudinal (equatorial for Tharsis sources); 7) Temperatures of deposited tephra decrease with distance from vent; 8) Magmatic exsolution of sulfur is favored by lower Patm and enhanced by higher altitude eruption sites (Tharsis); 9) Sulfur speciation and atmospheric chemistry predictions favor sulfuric acid formation and widespread dispersal during and immediately following eruptions; 10) Condensation and ensuing precipitation of sulfuric acid is predicted to melt any existing surface snow and ice, and to provide acidic aqueous surface environments favoring sulfate precipitation; 11) Estimates of eruption duration and continuity readily predict km-thick accumulations; 12) Fluctuating eruption conditions and S speciation can lead to interbedding of phyllosilicates and sulfates. </p><p>Explosive volcanism in the Tharsis region appears to meet the necessary requirements for the formation, evolution and preservation of sulfates in the VM-ILD, including: 1) sources of sulfur; 2) sources of liquid water; 3) cold climates; 4) resulting acidic environments (sulfur concentration in aqueous solutions); 5) mechanism to collect S-rich waters and then to evaporate water and concentrate/deposit sulfates; 6) varying climate conditions to permit observed interbedding of phyllosilicates and sulfates; 7) Tharsis environment accounts for concentration in certain locations; and 8) subsequent dry and cold climatic conditions preserve ancient sulfates to the present.  To test this model we are compiling predictive tephra/volatile dispersal stratigraphies to compare to the detailed characteristics/trends observed in the Valles Marineris ILDs.</p>


2017 ◽  
Vol 4 (3) ◽  
pp. 62-72
Author(s):  
O. Zhukorsky ◽  
O. Nykyforuk ◽  
N. Boltyk

Aim. Proper development of animal breeding in the conditions of current global problems and the decrease of anthropogenic burden on environment due to greenhouse gas emissions, caused by animal breeding activity, require the study of interaction processes between animal breeding and external climatic conditions. Methods. The theoretical substantiation of the problem was performed based on scientifi c literature, statistical informa- tion of the UN Food and Agriculture Organization and the data of the National greenhouse gas emissions inventory in Ukraine. Theoretically possible emissions of greenhouse gases into atmosphere due to animal breeding in Ukraine and specifi c farms are calculated by the international methods using the statistical infor- mation about animal breeding in Ukraine and the economic-technological information of the activity of the investigated farms. Results. The interaction between the animal breeding production and weather-and-climate conditions of environment was analyzed. Possible vectors of activity for the industry, which promote global warming and negative processes, related to it, were determined. The main factors, affecting the formation of greenhouse gases from the activity of enterprises, aimed at animal breeding production, were characterized. Literature data, statistical data and calculations were used to analyze the role of animal breeding in the green- house gas emissions in global and national framework as well as at the level of specifi c farms with the consid- eration of individual specifi cities of these farms. Conclusions. Current global problems require clear balance between constant development of sustainable animal breeding and the decrease of the carbon footprint due to the activity of animal breeding.


Agriculture ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 290
Author(s):  
Koffi Djaman ◽  
Curtis Owen ◽  
Margaret M. West ◽  
Samuel Allen ◽  
Komlan Koudahe ◽  
...  

The highly variable weather under changing climate conditions affects the establishment and the cutoff of crop growing season and exposes crops to failure if producers choose non-adapted relative maturity that matches the characteristics of the crop growing season. This study aimed to determine the relationship between maize hybrid relative maturity and the grain yield and determine the relative maturity range that will sustain maize production in northwest New Mexico (NM). Different relative maturity maize hybrids were grown at the Agricultural Science Center at Farmington ((Latitude 36.69° North, Longitude 108.31° West, elevation 1720 m) from 2003 to 2019 under sprinkler irrigation. A total of 343 hybrids were grouped as early and full season hybrids according to their relative maturity that ranged from 93 to 119 and 64 hybrids with unknown relative maturity. The crops were grown under optimal management condition with no stress of any kind. The results showed non-significant increase in grain yield in early season hybrids and non-significant decrease in grain yield with relative maturity in full season hybrids. The relative maturity range of 100–110 obtained reasonable high grain yields and could be considered under the northwestern New Mexico climatic conditions. However, more research should target the evaluation of different planting date coupled with plant population density to determine the planting window for the early season and full season hybrids for the production optimization and sustainability.


The Holocene ◽  
2018 ◽  
Vol 29 (2) ◽  
pp. 244-261 ◽  
Author(s):  
Pablo G Messineo ◽  
Marcela S Tonello ◽  
Silvina Stutz ◽  
Alfonsina Tripaldi ◽  
Nahuel Scheifler ◽  
...  

The main objective of this work is to generate and integrate interpretations of human occupation strategies and inferences of the environmental-climatic conditions in the central Pampas during the middle and late Holocene. We present a novel archeological–geological–paleoecological analysis in the area of the Cabeza de Buey lake, placed in an aeolian landscape. During the middle Holocene, two events of human occupations were recognized at Laguna Cabeza de Buey 2 archeological site. Both events present a small amount of lithic materials, a low diversity of tools and activities developed with them (principally hard material), and the hunting and primary processing of artiodactyls. These evidences suggest a locus of specific activity associated with an ephemeral human settlement under climate conditions drier than present and the presence of small, brackish, and shallow water bodies. For the late late Holocene, the hunter-gatherer occupation has a higher depositional rate of lithic assemblage, stones with diverse origins, presence of pottery fragments, a great lithic tool diversity, knapping techniques, and activities developed with these tools (processing wood, bone, hide, non-woody plant, and soft material). These evidences reveal an occupation with a higher degree of recurrence represented by a locus of multiple activities associated with a more stable landscape, such as an environment of dunes fixed by grass vegetation, and the establishment of a permanent water body. The different environmental characteristics for the middle and late Holocene in this area promoted that human groups develop two different patterns of mobility, settlement and use of space.


Author(s):  
Brankica Babec ◽  
Srđan Šeremešić ◽  
Nada Hladni ◽  
Nemanja Ćuk ◽  
Dušan Stanisavljević ◽  
...  

Changing climate conditions coupled with the transformations of cultivation practices and land use in sole crop-based sunflower production may significantly decline yield stability of this oilseed crop. Given that sunflower takes the third place in the world oilseed market, with 45 million tons per year, and in the fourth place in vegetable oil production, it is necessary to adapt production technologies toward sustainable agriculture. Considering that, the goal of the research was to analyze and beneficial sustainable production technology of sunflower in intercropping systems. A four-year trial was conducted in Serbia’s agroecological rain-fed conditions (45°34’23.2"N 19°86’18.9"E) using a split-plot design. Two oil types and one confectionary sunflower hybrid were intercropped with common vetch, red clover and alfalfa. Analyses showed that intercropping of sunflower with common vetch resulted in the decrease in almost all sunflower trait values. Also, sunflower × alfalfa intercropping provided to be the most appropriate. The yield of NS Gricko and Rimi PR were statistically on the same level with sole cropping, while alfalfa biomass had better results when intercropped with NS Gricko as compared to sole cropping. Concerning the general belief that yields are more stable in intercropping than in sole crop, further research in this respect is needed, in addition to the research of time and method of sowing.


2020 ◽  
Vol 17 (35) ◽  
pp. 1175-1185
Author(s):  
Raphael ISMAGILOV ◽  
Еlena SOTCHENKO ◽  
Bulat AKHIYAROV ◽  
Damir ISLAMGULOV ◽  
Razit NURLYGAJANOV

The research aimed to identify the most productive hybrids selected by the All-Russian Research Institute of Maize to cultivate by the cereal seed technology in the natural conditions of the Middle Cis- Urals. Methodology. Maize was cultivated for seeds and green fodder for farm animals in the conditions of the Middle Cis-Urals. The maize green mass, consisting mainly of stems and leaves, usually contains up to 88-90% water. Silage being prepared for it has less dry matter and protein. Such fodder has low nutritional value and poor return from livestock products. The most high quality and nutritious feed can be received from maize seeds or its above-ground mass with seeds of milky-wax and wax ripeness. To select early-maturing hybrids with high nutritional value is the primary concern for the studied area. Results. The results demonstrate that the productivity of maize hybrids ranges from 2.50 to 6.76 t/ha depending on soil and climatic conditions. When maize hybrids are grown by seed technology, the above-ground mass of the studied crops is 30.68-68.80 t/ha. Conclusions. It is necessary to select earlier ripening and highly productive hybrids to increase the quality and nutrition of corn feed. The recommended hybrids for grain production are Ural 150 (5,45 t/ha), Baikal (5,38 t/ha) and Mashuk 170 MV (4,98 t/ha); K-170 (56,7 t/ha), Shihan (55,67 t/ha) and Mashuk 170 MV (54,99 t/ha) that provided a higher output of the green mass at milky-wax ripeness of grain are best for silage production. The resulting data make it possible to select maize hybrids with high yields and nutritional value for farms with similar soil and climate conditions and to develop diets for highly productive dairy and beef cattle.


2021 ◽  
Vol 31 (4) ◽  
pp. 243-248
Author(s):  
Nassima Bakir

Most developing countries have hot climate, ordinary jobsites characterized by reduced of human resources, equipment and infrastructures. The objective of this article is to make an experimental study of the influence of the hot climate such as that of Algeria, on the different properties of concrete in the fresh state, such as excessive water evaporation from the concrete surface, increased demand for water, increased slump loss corresponding to additional water on job-site, higher plastic shrinkage cracking and difficulty in controlling air content. At the hardened state, we could mention a reduction of strength at 28 days, decreased durability resulting from cracking at long-term period. To show the problems linked to concreting under these conditions and to present the appropriate solutions concrete or mortar can withstand the conditions in which it is implemented. Thus, negative effects caused principally by hot weather concreting motivated the choice of the such study. The research experimental work conditions in which the cementitious matrix was kept concerned two different environments, namely hot and dry climate conditions (t = 40°, h = 0%) alike the climate of the region of M'sila., and that of a medium with a hot and humid environment (t = 40°, h = 100%). The output of the investigation demonstrated the crucial role of the cure method in hot regions. The comparison of results for a reference concrete kept in air without any curing measures with two curing types simulating hot weather environment of the region M’sila was undertaken. These obtained outcome results were discussed based on the influence of climatic conditions to conclude procedures for hot weather concreting and suitable cure methods.


2017 ◽  
Vol 13 (1) ◽  
pp. 42-51 ◽  
Author(s):  
Daniela Štaffenová ◽  
Ján Rybárik ◽  
Miroslav Jakubčík

AbstractThe aim of experimental research in the area of exterior walls and windows suitable for wooden buildings was to build special pavilion laboratories. These laboratories are ideally isolated from the surrounding environment, airtight and controlled by the constant internal climate. The principle of experimental research is measuring and recording of required physical parameters (e.g. temperature or relative humidity). This is done in layers of experimental fragment sections in the direction from exterior to interior, as well as in critical places by stable interior and real exterior climatic conditions. The outputs are evaluations of experimental structures behaviour during the specified time period, possibly during the whole year by stable interior and real exterior boundary conditions. The main aim of this experimental research is processing of long-term measurements of experimental structures and the subsequent analysis. The next part of the research consists of collecting measurements obtained with assistance of the experimental detached weather station, analysis, evaluation for later setting up of reference data set for the research locality, from the point of view of its comparison to the data sets from Slovak Hydrometeorological Institute (SHMU) and to localities with similar climate conditions. Later on, the data sets could lead to recommendations for design of wooden buildings.


Sign in / Sign up

Export Citation Format

Share Document