scholarly journals Plant Growth-Promoting Endophytic Bacillus Aryabhattai Triggers Novel Genes to Induce Plant Growth

Author(s):  
Hongli Xu ◽  
Jingyao Gao ◽  
Roxana Portieles ◽  
Lihua Du ◽  
Xiangyou Gao ◽  
...  

Abstract Background: In nature, plants interact with a wide range of microorganisms. Most of these microorganisms have the ability to promote plant growth through the induction of important molecular pathways. The current work evaluated whether the endophytic bacterium Bacillus aryabhattai encourages plant growth and how transcriptional changes might be implicated in this effect.Results: The endophytic bacterium showed a significant effect on plant growth. Our results revealed that B. aryabhattai promotes the growth of Arabidopsis and tobacco plants. Notably, transcriptional changes in Arabidopsis plants treated with the bacterium were identified. Genes such as cinnamyl alcohol dehydrogenase, apyrase, thioredoxin H8, benzaldehyde dehydrogenase, indoleacetaldoxime dehydratase, berberine bridge enzyme-like and gibberellin-regulated protein were highly expressed. Additionally, endophytic bacterial genes such as arginine decarboxylase, D-hydantoinase, ATP synthase gamma chain and 2-hydroxyhexa-2,4-dienoate hydratase were activated during the interaction with Arabidopsis.Conclusions: The results show that new plant growth-related genes are induced during the interaction endophytic bacterium B. aryabhattai, and these changes may promote plant growth in sustainable agriculture.

2019 ◽  
Vol 39 (1) ◽  
Author(s):  
Ibomcha Ngangom ◽  
M. M. Nisha ◽  
S. Santhosh Kumar ◽  
K. V. Ravindra ◽  
Leela Tewari ◽  
...  

Plants produce a wide range of organic compounds like sugars, organic acids and vitamins, which can be used as nutrients or signals by microbial populations. On the other hand, microorganisms release phytohormones, enzymes, which may act directly or indirectly to activate plant immunity and regulate plant growth. Plant signalling molecules such as auxin and cytokinin can be produced by microorganisms to colonize efficiently with roots and enhance root activity. The isolated microbe Bacillus aryabhattai, has the ability to produce1-aminocyclopropane-1-carboxylate (ACC) deaminase to lower plant ethylene level, often a result of various stresses, and is found to be a key component in the efficacious functioning of this bacterium. The optimal functioning of this bacterium includes the synergistic interaction between ACC deaminase, and plant with bacterial indole-3-acetic acid (IAA).


2020 ◽  
Vol 1 (1) ◽  
pp. 1 ◽  
Author(s):  
Larasati Puspita Saridewi ◽  
Nur Prihatiningsih ◽  
Heru Adi Djatmiko

An important disease in eggplant is bacterial wilting caused by Ralstonia solanacearum. The aim of this research is to characterize the biochemical endophytic bacteria isolated from eggplant root (BEAT) and as an agent for promoting plant growth and controlling bacterial wilt disease in planta. This research was conducted at the Plant Protection Laboratory and screen house of the Faculty of Agriculture, Jenderal Soedirman University, Purwokerto. This research was conducted descriptively to test the biochemical character of BEAT and used a Complete Randomized Block Design (RCBD) in the in planta test with 4 treatments, 6 replications and 3 plants each treatment, so that 72 plants were tested. The treatment consisted of control (without endophytic bacteria) and 3 BEAT isolates. The results showed that the endophytic bacterium AKc isolate had the ability as a bacterium to promote plant growth by producing IAA phytohormones, phosphate solvents, enzymes producing proteases, cellulase, amylase, chitinase, and HCN, as well as increasing the root volume and fresh weight of plants respectively by 40, 42% and 31%, suppressing the disease intensity by 33.33% and able to suppress bacterial wilting the best on the AUDPC value that is 47.32% -day.


2020 ◽  
Author(s):  
Wenjing Wang ◽  
Clement Kyei Sarpong ◽  
Chun Song ◽  
Xiaofeng Zhang ◽  
Yuefeng Gan ◽  
...  

ABSTRACTThe solubilization and mineralization of phosphorus by phosphate-solubilizing bacteria (PSB) is one of the most important bacterial physiological characteristics in the soil biogeochemical cycle. Through the isolation and screening of microorganisms in the rhizosphere soil of intercropped soybean in Ya’an, Renshou and Chongzhou, 9 PSBs with high phosphorus solubilizing ability were identified. It mainly belongs to Bacillus and Pseudomonas. The phosphate solubility of Bacillus aryabhattai B8W22 is as high as 388.62 µg·mL-1. The physiological and biochemical characteristics of each strain showed that it can secrete organic acids such as formic acid, acetic acid lactic acid and pyruvic acid. In addition, all strains can produce indole acetic acid and siderophores that promote plant growth. Seed germination experiments also showed that the phosphorus solubilizing bacteria isolated in this research have a certain ability to promote plant growth.IMPRTANCEBacillus aryabhattai from rhizosphere soil of intercropped soybean has high phosphate-solubilizing ability, could produce indole acetic acid and siderophores that promote plant growth, and are of great significance in reducing the application of chemical phosphate fertilizers and promoting sustainable agricultural development.


GIS Business ◽  
2019 ◽  
Vol 14 (6) ◽  
pp. 425-431
Author(s):  
Subin Thomas ◽  
Dr. M. Nandhini

Biofertilizers are fertilizers containing microorganisms that promote plant growth by improving the supply of nutrients to the host plant. The supply of nutrients is improved naturally by nitrogen fixation and solubilizing phosphorus. The living microorganisms in biofertilizers help in building organic matter in the soil and restoring the natural nutrient cycle. Biofertilizers can be grouped into Nitrogen-fixing biofertilizers, Phosphorous-solubilizing biofertilizers, Phosphorous-mobilizing biofertilizers, Biofertilizers for micro nutrients and Plant growth promoting rhizobacteria. This study conducted in Kottayam district was intended to identify the awareness and acceptance of biofertilizers among the farmers of the area. Data have been collected from 120 farmers by direct interviews with structured questionnaire.


Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1443
Author(s):  
Yoshiaki Kamiyama ◽  
Sotaro Katagiri ◽  
Taishi Umezawa

Reversible phosphorylation is a major mechanism for regulating protein function and controls a wide range of cellular functions including responses to external stimuli. The plant-specific SNF1-related protein kinase 2s (SnRK2s) function as central regulators of plant growth and development, as well as tolerance to multiple abiotic stresses. Although the activity of SnRK2s is tightly regulated in a phytohormone abscisic acid (ABA)-dependent manner, recent investigations have revealed that SnRK2s can be activated by group B Raf-like protein kinases independently of ABA. Furthermore, evidence is accumulating that SnRK2s modulate plant growth through regulation of target of rapamycin (TOR) signaling. Here, we summarize recent advances in knowledge of how SnRK2s mediate plant growth and osmotic stress signaling and discuss future challenges in this research field.


2021 ◽  
Vol 9 (4) ◽  
pp. 809
Author(s):  
Hiroya Yurimoto ◽  
Kosuke Shiraishi ◽  
Yasuyoshi Sakai

Methanol is abundant in the phyllosphere, the surface of the above-ground parts of plants, and its concentration oscillates diurnally. The phyllosphere is one of the major habitats for a group of microorganisms, the so-called methylotrophs, that utilize one-carbon (C1) compounds, such as methanol and methane, as their sole source of carbon and energy. Among phyllospheric microorganisms, methanol-utilizing methylotrophic bacteria, known as pink-pigmented facultative methylotrophs (PPFMs), are the dominant colonizers of the phyllosphere, and some of them have recently been shown to have the ability to promote plant growth and increase crop yield. In addition to PPFMs, methanol-utilizing yeasts can proliferate and survive in the phyllosphere by using unique molecular and cellular mechanisms to adapt to the stressful phyllosphere environment. This review describes our current understanding of the physiology of methylotrophic bacteria and yeasts living in the phyllosphere where they are exposed to diurnal cycles of environmental conditions.


2021 ◽  
Vol 9 (5) ◽  
pp. 1036
Author(s):  
Dongmei Lyu ◽  
Levini A. Msimbira ◽  
Mahtab Nazari ◽  
Mohammed Antar ◽  
Antoine Pagé ◽  
...  

Terrestrial plants evolution occurred in the presence of microbes, the phytomicrobiome. The rhizosphere microbial community is the most abundant and diverse subset of the phytomicrobiome and can include both beneficial and parasitic/pathogenic microbes. Prokaryotes of the phytomicrobiome have evolved relationships with plants that range from non-dependent interactions to dependent endosymbionts. The most extreme endosymbiotic examples are the chloroplasts and mitochondria, which have become organelles and integral parts of the plant, leading to some similarity in DNA sequence between plant tissues and cyanobacteria, the prokaryotic symbiont of ancestral plants. Microbes were associated with the precursors of land plants, green algae, and helped algae transition from aquatic to terrestrial environments. In the terrestrial setting the phytomicrobiome contributes to plant growth and development by (1) establishing symbiotic relationships between plant growth-promoting microbes, including rhizobacteria and mycorrhizal fungi, (2) conferring biotic stress resistance by producing antibiotic compounds, and (3) secreting microbe-to-plant signal compounds, such as phytohormones or their analogues, that regulate aspects of plant physiology, including stress resistance. As plants have evolved, they recruited microbes to assist in the adaptation to available growing environments. Microbes serve themselves by promoting plant growth, which in turn provides microbes with nutrition (root exudates, a source of reduced carbon) and a desirable habitat (the rhizosphere or within plant tissues). The outcome of this coevolution is the diverse and metabolically rich microbial community that now exists in the rhizosphere of terrestrial plants. The holobiont, the unit made up of the phytomicrobiome and the plant host, results from this wide range of coevolved relationships. We are just beginning to appreciate the many ways in which this complex and subtle coevolution acts in agricultural systems.


2021 ◽  
Vol 13 (14) ◽  
pp. 8030
Author(s):  
Shehzad Mehmood ◽  
Amir Abdullah Khan ◽  
Fuchen Shi ◽  
Muhammad Tahir ◽  
Tariq Sultan ◽  
...  

Plant growth-promoting rhizobacteria play a substantial role in plant growth and development under biotic and abiotic stress conditions. However, understanding about the functional role of rhizobacterial strains for wheat growth under salt stress remains largely unknown. Here we investigated the antagonistic bacterial strain Bacillus aryabhattai PM34 inhabiting ACC deaminase and exopolysaccharide producing ability to ameliorate salinity stress in wheat seedlings under in vitro conditions. The strain PM34 was isolated from the potato rhizosphere and screened for different PGP traits comprising nitrogen fixation, potassium, zinc solubilization, indole acetic acid, siderophore, and ammonia production, along with various extracellular enzyme activities. The strain PM34 showed significant tolerance towards both abiotic stresses including salt stress (NaCl 2 M), heavy metal (nickel, 100 ppm, and cadmium, 300 ppm), heat stress (60 °C), and biotic stress through mycelial inhibition of Rhizoctonia solani (43%) and Fusarium solani (41%). The PCR detection of ituC, nifH, and acds genes coding for iturin, nitrogenase, and ACC deaminase enzyme indicated the potential of strain PM34 for plant growth promotion and stress tolerance. In the in vitro experiment, NaCl (2 M) decreased the wheat growth while the inoculation of strain PM34 enhanced the germination% (48%), root length (76%), shoot length (75%), fresh biomass (79%), and dry biomass (87%) over to un-inoculated control under 2M NaCl level. The results of experiments depicted the ability of antagonistic bacterial strain Bacillus aryabhattai PM34 to augment salt stress tolerance when inoculated to wheat plants under saline environment.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Sujit Shah ◽  
Krishna Chand ◽  
Bhagwan Rekadwad ◽  
Yogesh S. Shouche ◽  
Jyotsna Sharma ◽  
...  

Abstract Background A plant growth-promoting endophytic bacterium PVL1 isolated from the leaf of Vanda cristata has the ability to colonize with roots of plants and protect the plant. PVL1 was isolated using laboratory synthetic media. 16S rRNA gene sequencing method has been employed for identification before and after root colonization ability. Results Original isolated and remunerated strain from colonized roots were identified as Bacillus spp. as per EzBiocloud database. The presence of bacteria in the root section of the plantlet was confirmed through Epifluorescence microscopy of colonized roots. The in-vitro plantlet colonized by PVL1 as well as DLMB attained higher growth than the control. PVL1 capable of producing plant beneficial phytohormone under in vitro cultivation. HPLC and GC-MS analysis suggest that colonized plants contain Indole Acetic Acid (IAA). The methanol extract of Bacillus spp., contains 0.015 μg in 1 μl concentration of IAA. PVL1 has the ability to produce antimicrobial compounds such as ethyl iso-allocholate, which exhibits immune restoring property. One-way ANOVA shows that results were statistically significant at P ≤ 0.05 level. Conclusions Hence, it has been concluded that Bacillus spp. PVL1 can promote plant growth through secretion of IAA during root colonization and ethyl iso-allocholate to protect plants from foreign infections. Thus, this study supports to support Koch’s postulates of bacteria establishment.


Diversity ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 24
Author(s):  
Ling Min Jiang ◽  
Yong Jae Lee ◽  
Ho Le Han ◽  
Myoung Hui Lee ◽  
Jae Cheol Jeong ◽  
...  

Jejubacter calystegiae KSNA2T, a moderately halophilic, endophytic bacterium isolated from beach morning glory (Calystegia soldanella), was determined to be a novel species in a new genus in the family Enterobacteriaceae. To gain insights into the genetic basis of the salinity stress response of strain KSNA2T, we sequenced its genome using two complementary sequencing platforms (Illumina HiSeq and PacBio RSII). The genome contains a repertoire of metabolic pathways, such as those for nitrogen, phosphorus, and some amino acid metabolism pathways. Functional annotation of the KSNA2T genome revealed several genes involved in salt tolerance pathways, such as those encoding sodium transporters, potassium transporters, and osmoprotectant enzymes. Plant growth-promoting bacteria-based experiments indicated that strain KSNA2T promotes the germination of vegetable seeds in saline conditions. Overall, the genetic and biological analyses of strain KSNA2T provide valuable insights into bacteria-mediated salt tolerance in agriculture.


Sign in / Sign up

Export Citation Format

Share Document