scholarly journals Molecular Detection and Characterization of Porcine Astrovirus on the basis of Partial ORF1b/ORF2 Region

Author(s):  
Rajpreet Kaur ◽  
PARVEEN KUMAR ◽  
Naresh Jindal ◽  
Sanjeevna Kumari Minhas ◽  
Anand Prakash ◽  
...  

Abstract The porcine astrovirus (PAstV) is distributed globally and exists as five distinct lineages (PAstV1-PAstV5). PAstV is considered one of the important pathogen associated with diarrhea among pigs. In the present study, the PAstV was detected in 13.4% (19/141) of fecal samples including 14.4% (16/111) diarrheic and 10% (3/30) non-diarrheic samples by RT-PCR based on partial ORF1b/ORF2 gene from Haryana, India. The results indicated that the weaning piglets were more susceptible to PAstV infection followed by suckling piglets. The phylogenetic analysis of the viral strains revealed the circulation ofPAstV4 (55.5%) and PAstV2 (44.4%) lineages with PAstV4 being the predominant lineage. To conclude, RT-PCR screening followed by sequencing of PAstV revealed high genetic diversity among the PAstV strains suggesting the wide range of heterogeneity and possible recombination events of viral strains in the state.

2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Nina Wang ◽  
Lichao Yang ◽  
Guohui Li ◽  
Xu Zhang ◽  
Jianwei Shao ◽  
...  

Abstract Background Wenzhou virus (WENV), a newly discovered mammarenavirus in rodents, is associated with fever and respiratory symptoms in humans. This study was aimed to detect and characterize the emerging virus in rodents in Guangzhou, China. Results A total of 100 small mammals, including 70 Rattus norvegicus, 22 Suncus murinus, 4 Bandicota indica, 3 Rattus flavipectus, and 1 Rattus losea, were captured in Guangzhou, and their brain tissues were collected and pooled for metagenomic analysis, which generated several contigs targeting the genome of WENV. Two R. norvegicus (2.9%) were further confirmed to be infected with WENV by RT-PCR. The complete genome (RnGZ37-2018 and RnGZ40-2018) shared 85.1–88.9% nt and 83.2–96.3% aa sequence identities to the Cambodian strains that have been shown to be associated with human disease. Phylogenetic analysis showed that all identified WENV could be grouped into four different lineages, and the two Guangzhou strains formed an independent clade. We also analyzed the potential recombinant events occurring in WENV strains. Conclusions Our study showed a high genetic diversity of WENV strains in China, emphasizing the relevance of surveillance of this emerging mammarenavirus in both natural reservoirs and humans.


2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Taveesak Janetanakit ◽  
Supassama Chaiyawong ◽  
Kamonpan Charoenkul ◽  
Ratanaporn Tangwangvivat ◽  
Ekkapat Chamsai ◽  
...  

Abstract Background Enterovirus G (EV-G) causes subclinical infections and is occasionally associated with diarrhea in pigs. In this study, we conducted a cross-sectional survey of EV-G in pigs from 73 pig farms in 20 provinces of Thailand from December 2014 to January 2018. Results Our results showed a high occurrence of EV-Gs which 71.6 % of fecal and intestinal samples (556/777) and 71.2 % of pig farms (52/73) were positive for EV-G by RT-PCR specific to the 5’UTR. EV-Gs could be detected in all age pig groups, and the percentage positivity was highest in the fattening group (89.7 %), followed by the nursery group (89.4 %). To characterize the viruses, 34 EV-G representatives were characterized by VP1 gene sequencing. Pairwise sequence comparison and phylogenetic analysis showed that Thai-EV-Gs belonged to the EV-G1, EV-G3, EV-G4, EV-G8, EV-G9 and EV-G10 genotypes, among which the EV-G3 was the predominant genotype in Thailand. Co-infection with different EV-G genotypes or with EV-Gs and porcine epidemic diarrhea virus (PEDV) or porcine deltacoronavirus (PDCoV) on the same pig farms was observed. Conclusions Our results confirmed that EV-G infection is endemic in Thailand, with a high genetic diversity of different genotypes. This study constitutes the first report of the genetic characterization of EV-GS in pigs in Thailand.


Author(s):  
Mai Kishimoto ◽  
Bernard M. Hang’ombe ◽  
William W. Hall ◽  
Yasuko Orba ◽  
Hirofumi Sawa ◽  
...  

Encephalomyocarditis virus (EMCV) infects a wide range of hosts and can cause encephalitis, myocarditis, reproductive disorders and diabetes mellitus in selected mammalian species. As for humans, EMCV infection seems to occur by the contact with animals and can cause febrile illnesses in some infected patients. Here we isolated EMCV strain ZM12/14 from a natal multimammate mouse (Mastomys natalensis: M. natalensis) in Zambia. Pairwise sequence similarity of the ZM12/14 P1 region consisting of antigenic capsid proteins showed the highest similarity of nucleotide (80.7 %) and amino acid (96.2%) sequence with EMCV serotype 1 (EMCV-1). Phylogenetic analysis revealed that ZM12/14 clustered into EMCV-1 at the P1 and P3 regions but segregated from known EMCV strains at the P2 region, suggesting a unique evolutionary history. Reverse transcription PCR (RT-PCR) screening and neutralizing antibody assays for EMCV were performed using collected tissues and serum from various rodents (n=179) captured in different areas in Zambia. We detected the EMCV genome in 19 M. natalensis (19/179=10.6 %) and neutralizing antibody for EMCV in 33 M. natalensis (33/179=18.4 %). However, we did not detect either the genome or neutralizing antibody in other rodent species. High neutralizing antibody litres (≧320) were observed in both RT-PCR-negative and -positive animals. Inoculation of ZM12/14 caused asymptomatic persistent infection in BALB/c mice with high antibody titres and high viral loads in some organs, consistent with the above epidemiological results. This study is the first report of the isolation of EMCV in Zambia, suggesting that M. natalensis may play a role as a natural reservoir of infection.


Viruses ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 490
Author(s):  
Kgomotso Makhaola ◽  
Sikhulile Moyo ◽  
Lemme P. Kebaabetswe

In this review, we describe the distribution and genetic diversity of sapoviruses detected among humans, animals and the environment in African countries. Databases were searched for studies conducted in African countries and published between Jan 2005 and Mar 2019. Only studies where RT- PCR was used for initial detection were included in the systematic review. We identified 27 studies from 14 African countries with 18 focused on human sapoviruses, two on animal sapoviruses and seven on sapoviruses observed in the environment. Samples. The overall estimated pooled prevalence of human sapovirus infections among symptomatic and asymptomatic individuals was similar at 5.0% (95% Confidence Interval (CI): 3.0–7.0) and 2.0% (95% CI: 1.0–3.0), respectively. In environmental samples sapovirus detection rates ranged from 0% to 90% while in animal studies it was 1.7% to 34.8%. Multiple causes of gastroenteritis, sensitivity of detection method used, diversity of sapovirus strains and rotavirus vaccine coverage rate are some of the factors that could have contributed to the wide range of sapovirus detection rates that were reported. The studies reported human genogroups GI, GII, and GIV, with genogroup GI being the most prevalent. Some potential novel strains were detected from animal samples. Most studies genotyped a small portion of either the capsid and/or polymerase region. However, this is a limitation as it does not allow for detection of recombinants that occur frequently in sapoviruses. More studies with harmonized genotyping protocols that cover longer ranges of the sapovirus genome are needed to provide more information on the genomic characterization of sapoviruses circulating in African countries. Further investigations on animal to human transmission for sapoviruses are needed as inter-species transmissions have been documented for other viruses.


2021 ◽  
Vol 22 (3) ◽  
pp. 365-376
Author(s):  
I.C. Peletiri ◽  
E.I. Ikeh ◽  
G.M. Ayanbimpe ◽  
E. Nna

Background: The most commonly used approaches for detection and characterization of bacterial pathogens of meningitis in developing countries include culture, Gram stain, and latex agglutination. The positivity rate of culture is relatively low due to suboptimal storage and transportation conditions, culture practice, and/or antibiotic treatment administered before specimens are collected. Specimens that yield no growth in culture can still be analyzed using molecular methods, and metagenomic DNA (mDNA) extracted directly from clinical samples (CSF) can be used. We aimed to detect and characterize three major bacterial causes of cerebrospinal meningitis (CSM); Neisseria meningitidis, Haemophilus influenzae, and Streptococcus pneumoniae using mDNA extracted directly from CSF samples. Methodology: Metagenomic DNA templates were prepared directly from CSF specimens collected from 210 patients with suspected CSM. A multiplex Real Time PCR (mRT-PCR) using the ABI StepOne Plus Machine and Taqman Probe chemistry was used in the molecular detection, while serogroup/serotype-specific singleplex RT-PCR was used to characterize all positives samples. Results: Eighty-eight (41.9%) of the 210 samples were positive with the mRT-PCR assay for one or a combination of two of the three bacteria. Of these, 59 (67.1%) were N. meningitidis, 2 (2.3%) were H. influenzae, 3 (3.4%) were S. pneumoniae, 15 (17 %) had co-infections of N. meningitidis with H. influenzae, and 9 (10.2%) had co-infections of H. influenzae and S. pneumoniae. The serogroups of N. meningitidis encountered were A (13.5%), B (23%), C (8.1%), W135 (8.1%), X (5.4%), Y (32.4%), and non-groupable (9.5%). The serotypes of H. influenzae were Hia (3.8%), Hib (57.7%), Hic (3.85%), Hie (11.5%) and Hif (23.1%). The serotypes of S. pneumoniae were Wxy1 (8.3%), Wxy4 (33.3%), Wxy5 (50.0%), and Wxy9 (8.3%). Conclusion: Multiplex RT-PCR is a fast and accurate method for detecting and characterizing serogroups/serotypes of major bacteria implicated in CSM. Isolating DNA directly from CSF improves turnaround time, which will speed up patient care and management. Keywords: Cerebrospinal meningitis, metagenomic DNA, multiplex Real Time PCR, Northern Nigeria   French title: Détection moléculaire et caractérisation de bactéries à partir d'échantillons de LCR de patients suspectés de méningite cérébrospinale dans certaines parties du nord du Nigéria à l'aide d'extraits d'ADN métagénomique   Contexte: Les approches les plus couramment utilisées pour la détection et la caractérisation des agents pathogènes bactériens de la méningite dans les pays en développement comprennent la culture, la coloration de Gram et l'agglutination au latex. Le taux de positivité de la culture est relativement faible en raison des conditions de stockage et de transport sous-optimales, des pratiques de culture et/ou du traitement antibiotique administré avant le prélèvement des échantillons. Les échantillons qui ne donnent pas de croissance en culture peuvent toujours être analysés à l'aide de méthodes moléculaires, et l'ADN métagénomique (ADNm) extrait directement d'échantillons cliniques (LCR) peut être utilisé. Nous visions à détecter et à caractériser trois causes bactériennes majeures de la méningite cérébrospinale (CSM); Neisseria meningitidis, Haemophilus influenzae et Streptococcus pneumoniae à l'aide d'ADNm extrait directement d'échantillons de LCR. Méthodologie: Des matrices d'ADN métagénomique ont été préparées directement à partir d'échantillons de LCR prélevés sur 210 patients suspects de CSM. Une PCR multiplex en temps réel (mRT-PCR) utilisant la chimie de la machine ABI StepOne Plus et de la sonde Taqman a été utilisée pour la détection moléculaire, tandis que la RT-PCR monoplex spécifique au sérogroupe/sérotype a été utilisée pour caractériser tous les échantillons positifs. Résultats: Quatre-vingt-huit (41,9%) des 210 échantillons étaient positifs avec le test mRT-PCR pour une ou une combinaison de deux des trois bactéries. Parmi ceux-ci, 59 (67,1%) étaient N. meningitidis, 2 (2,3%) étaient H. influenzae, 3 (3,4%) étaient S. pneumoniae, 15 (17%) avaient des co-infections de N. meningitidis avec H. influenzae et 9 (10,2%) avaient des co-infections à H. influenzae et S. pneumoniae. Les sérogroupes de N. meningitidis rencontrés étaient A (13,5%), B (23%), C (8,1%), W135 (8,1%), X (5,4%), Y (32,4%) et non groupables (9,5%). Les sérotypes de H. influenzae étaient Hia (3,8%), Hib (57,7%), Hic (3,85%), Hie (11,5%) et Hif (23,1%). Les sérotypes de S. pneumoniae étaient Wxy1 (8,3%), Wxy4 (33,3%), Wxy5 (50,0%) et Wxy9 (8,3%). Conclusion: La RT-PCR multiplex est une méthode rapide et précise de détection et de caractérisation des sérogroupes/sérotypes des principales bactéries impliquées dans le CSM. Isoler l'ADN directement du LCR améliore le temps de traitement, ce qui accélérera les soins et la gestion des patients. Mots clés: méningite cérébro-spinale, ADN métagénomique, PCR multiplex en temps réel, nord du Nigéria


Polymer Chemistry: A Practical Approach in Chemistry has been designed for both chemists working in and new to the area of polymer synthesis. It contains detailed instructions for preparation of a wide-range of polymers by a wide variety of different techniques, and describes how this synthetic methodology can be applied to the development of new materials. It includes details of well-established techniques, e.g. chain-growth or step-growth processes together with more up-to-date examples using methods such as atom-transfer radical polymerization. Less well-known procedures are also included, e.g. electrochemical synthesis of conducting polymers and the preparation of liquid crystalline elastomers with highly ordered structures. Other topics covered include general polymerization methodology, controlled/"living" polymerization methods, the formation of cyclic oligomers during step-growth polymerization, the synthesis of conducting polymers based on heterocyclic compounds, dendrimers, the preparation of imprinted polymers and liquid crystalline polymers. The main bulk of the text is preceded by an introductory chapter detailing some of the techniques available to the scientist for the characterization of polymers, both in terms of their chemical composition and in terms of their properties as materials. The book is intended not only for the specialist in polymer chemistry, but also for the organic chemist with little experience who requires a practical introduction to the field.


2020 ◽  
Vol 110 (1) ◽  
pp. 106-120 ◽  
Author(s):  
Avijit Roy ◽  
Andrew L. Stone ◽  
Gabriel Otero-Colina ◽  
Gang Wei ◽  
Ronald H. Brlansky ◽  
...  

The genus Dichorhavirus contains viruses with bipartite, negative-sense, single-stranded RNA genomes that are transmitted by flat mites to hosts that include orchids, coffee, the genus Clerodendrum, and citrus. A dichorhavirus infecting citrus in Mexico is classified as a citrus strain of orchid fleck virus (OFV-Cit). We previously used RNA sequencing technologies on OFV-Cit samples from Mexico to develop an OFV-Cit–specific reverse transcription PCR (RT-PCR) assay. During assay validation, OFV-Cit–specific RT-PCR failed to produce an amplicon from some samples with clear symptoms of OFV-Cit. Characterization of this virus revealed that dichorhavirus-like particles were found in the nucleus. High-throughput sequencing of small RNAs from these citrus plants revealed a novel citrus strain of OFV, OFV-Cit2. Sequence comparisons with known orchid and citrus strains of OFV showed variation in the protein products encoded by genome segment 1 (RNA1). Strains of OFV clustered together based on host of origin, whether orchid or citrus, and were clearly separated from other dichorhaviruses described from infected citrus in Brazil. The variation in RNA1 between the original (now OFV-Cit1) and the new (OFV-Cit2) strain was not observed with genome segment 2 (RNA2), but instead, a common RNA2 molecule was shared among strains of OFV-Cit1 and -Cit2, a situation strikingly similar to OFV infecting orchids. We also collected mites at the affected groves, identified them as Brevipalpus californicus sensu stricto, and confirmed that they were infected by OFV-Cit1 or with both OFV-Cit1 and -Cit2. OFV-Cit1 and -Cit2 have coexisted at the same site in Toliman, Queretaro, Mexico since 2012. OFV strain-specific diagnostic tests were developed.


Blood ◽  
1999 ◽  
Vol 93 (12) ◽  
pp. 4131-4143 ◽  
Author(s):  
Alan K. Burnett ◽  
David Grimwade ◽  
Ellen Solomon ◽  
Keith Wheatley ◽  
Anthony H. Goldstone

Abstract All-trans retinoic acid (ATRA) is an essential component of the treatment of acute promyelocytic leukemia (APL), but the optimal timing and duration remain to be determined. Molecular characterization of this disease can refine the diagnosis and could be potentially useful in monitoring response to treatment. Patients defined morphologically to have APL were randomized to receive a 5-day course of ATRA before commencing chemotherapy or to receive daily ATRA commencing with chemotherapy and continuing until complete remission (CR). The chemotherapy was that used in current MRC Leukaemia Trials. Outcome comparisons were by intention to treat with additional analysis for relevant risk factors. Patients were characterized by molecular techniques for the fusion products of the t(15;17) and monitored by reverse transcriptase-polymerase chain reaction (RT-PCR) during and after treatment. Two hundred thirty-nine patients were randomized. Treatment with extended ATRA resulted in a superior remission rate (87% v 70%, P < .001), due to fewer early and induction deaths (12% v 23%, P = .02), and less resistant disease (2% v 7%, P = .03), which was associated with a significantly more rapid recovery of neutrophils and platelets. Extended ATRA reduced relapse risk (20%v 36% at 4 years, P = .04) and resulted in superior survival (71% v 52% at 4 years, P = .005). Presenting white blood cell count (WBC) was a key determinant of outcome. The 70% of patients who presented with a WBC less than 10 × 109/L had a better CR (85% v62%, P = .0001) and reduced relapse risk (22% v42%, P = .002) and superior survival (69%v 43%, P < .0001). Within the low count group, extended ATRA resulted in a better CR (94% v 76%, P= .001), reduced relapse risk (13% v 35%, P = .04), and improved survival (80% v 57%, P = .0009). There was no evidence of benefit in patients presenting with a higher WBC (>10 × 109/L). Molecular monitoring after the third chemotherapy course had a correlation with risk of relapse. The relapse risk was 57% if the RT-PCR was positive versus 27% if the RT-PCR was negative (P = .006). APL patients who present with a low WBC derive substantial benefit from combining ATRA with induction chemotherapy until remission is achieved, whereas patients with a higher WBC did not benefit. Molecular characterization of disease can improve diagnostic precision and a positive RT-PCR after consolidation identifies patients at a higher risk of relapse.


2021 ◽  
Vol 22 (4) ◽  
pp. 2104
Author(s):  
Pedro Robles ◽  
Víctor Quesada

Eleven published articles (4 reviews, 7 research papers) are collected in the Special Issue entitled “Organelle Genetics in Plants.” This selection of papers covers a wide range of topics related to chloroplasts and plant mitochondria research: (i) organellar gene expression (OGE) and, more specifically, chloroplast RNA editing in soybean, mitochondria RNA editing, and intron splicing in soybean during nodulation, as well as the study of the roles of transcriptional and posttranscriptional regulation of OGE in plant adaptation to environmental stress; (ii) analysis of the nuclear integrants of mitochondrial DNA (NUMTs) or plastid DNA (NUPTs); (iii) sequencing and characterization of mitochondrial and chloroplast genomes; (iv) recent advances in plastid genome engineering. Here we summarize the main findings of these works, which represent the latest research on the genetics, genomics, and biotechnology of chloroplasts and mitochondria.


Sign in / Sign up

Export Citation Format

Share Document