scholarly journals Probiotics Composition Harbors Against Osteoarthritis and Inflammation through GABA in Mice

Author(s):  
Uzma Amin ◽  
Rong Jiang ◽  
Shahid Masood Raza ◽  
Li Liang ◽  
Naibo Feng ◽  
...  

Abstract Background: Osteoarthritis (OA) is an age-related disease with multifactorial etiology and its prevalence growing globally. The role of Gut microbiota is inevitable concerning musculoskeletal disease and health. A method of controlling inflammation and cartilage destruction through changes in gut microbiota is proposed. Previously reported data lack the specific approach to microbial clusters and biomarkers in understanding the interactions between host and microbiome.Method: We adopted a novel approach to elaborate the positive influence of S. thermophilus and L. pentosus to treat Anterior cruciate ligament transection (ACLT) induced OA in vivo. For in vitro analysis Human Chondrocyte Cell Line (C28/I2) was used to analyze chondrogenic effect of microbes and GABA. Tukey’s multiple-comparisons test or Two-stage linear step-up procedure of Benjamini, Krieger, and Yekutieli test were used to statistically analyze the data.Results: The gut microbiota-joint axis promoted chondrogenesis and inhibited catabolism. Selected bacteria produced GABA as postbiotic. This study is the first to represent the chondrogenic and protective effects of γ-aminobutyric acid (GABA) on human chondrocytes and cartilage tissue in mice. Oral administration of it down-regulated cartilage degradation in OA-induced mice and decreased inflammation.Conclusion: We speculated the positive results from GABA and probiotics producing GABA against OA. GABA may have functional roles in chondrocyte maturation /differentiation. This data provides a foundation for further studies to elucidate the role of GABA producing microbes and GABA in the regulation of cartilaginous cell proliferation. These findings open future horizons to understand the gut-joint axis and for the treatment of OA. Thus probiotic / GABA therapy could act as a nutraceutical modulator for OA.

Author(s):  
Alaa R. Khudhair ◽  
Nada N Al-Shawi

Ciprofloxacin, which is a second generation of fluoroquinolone and one of the most effective and widely used drugs within fluoroquinolone. Unfamiliar adverse effects of ciprofloxacin such as bone marrow (BM) suppression, thrombocytopenia, anemia, agranulocytosis, renal failure, and others observed. Lutein, is a xanthophyll (an oxygenated carotenoid), was focused by most studies as it has a strong antioxidant activity in vitro; and also, it has been associated with reducing the risk of the age-related disorders. The current study was designed to describe the role of apoptosis through the measurement of Bcl-2 associated X protein (Bax) marker, as mechanisms of bone marrow toxicity induced by ciprofloxacin and to find whether lutein may have protective effects on ciprofloxacin-induced toxicity in bone marrow of rats. Ciprofloxacin (Group II) caused significant (P<0.05) reduction in total RBCs counts and -WBCs, and significantly elevations (P<0.05) Bcl-2 associated X protein (Bax) in bone marrow (BM) tissues homogenates compared to control (Group I) rats. 


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Donita L. Garland ◽  
Eric A. Pierce ◽  
Rosario Fernandez-Godino

AbstractThe complement system plays a role in the formation of sub-retinal pigment epithelial (RPE) deposits in early stages of age-related macular degeneration (AMD). But the specific mechanisms that connect complement activation and deposit formation in AMD patients are unknown, which limits the development of efficient therapies to reduce or stop disease progression. We have previously demonstrated that C3 blockage prevents the formation of sub-RPE deposits in a mouse model of EFEMP1-associated macular degeneration. In this study, we have used double mutant Efemp1R345W/R345W:C5-/- mice to investigate the role of C5 in the formation of sub-RPE deposits in vivo and in vitro. The data revealed that the genetic ablation of C5 does not eliminate the formation of sub-RPE deposits. Contrarily, the absence of C5 in RPE cultures promotes complement dysregulation that results in increased activation of C3, which likely contributes to deposit formation even in the absence of EFEMP1-R345W mutant protein. The results also suggest that genetic ablation of C5 alters the extracellular matrix turnover through an effect on matrix metalloproteinases in RPE cell cultures. These results confirm that C3 rather than C5 could be an effective therapeutic target to treat early AMD.


2021 ◽  
Vol 2 ◽  
Author(s):  
Morgane Davezac ◽  
Melissa Buscato ◽  
Rana Zahreddine ◽  
Patrick Lacolley ◽  
Daniel Henrion ◽  
...  

Cardiovascular diseases remain an age-related pathology in both men and women. These pathologies are 3-fold more frequent in men than in women before menopause, although this difference progressively decreases after menopause. The vasculoprotective role of estrogens are well established before menopause, but the consequences of their abrupt decline on the cardiovascular risk at menopause remain debated. In this review, we will attempt to summarize the main clinical and experimental studies reporting the protective effects of estrogens against cardiovascular diseases, with a particular focus on atherosclerosis, and the impact of aging and estrogen deprivation on their endothelial actions. The arterial actions of estrogens, but also part of that of androgens through their aromatization into estrogens, are mediated by the estrogen receptor (ER)α and ERβ. ERs belong to the nuclear receptor family and act by transcriptional regulation in the nucleus, but also exert non-genomic/extranuclear actions. Beside the decline of estrogens at menopause, abnormalities in the expression and/or function of ERs in the tissues, and particularly in arteries, could contribute to the failure of classic estrogens to protect arteries during aging. Finally, we will discuss how recent insights in the mechanisms of action of ERα could contribute to optimize the hormonal treatment of the menopause.


2021 ◽  
Author(s):  
Yuanjun Teng ◽  
Lijun Da ◽  
Xiaohui Zhang ◽  
Hong Wang ◽  
Hua Han ◽  
...  

Abstract Background: Interference screw is commonly used for graft fixation in anterior cruciate ligament (ACL) reconstruction However, previous studies h a d reported that the insertion of interference screws significantly caused graft laceration . The purpose of this study was to determine whether sutures reduce d the graft laceration from the insertion of interference screws in ACL reconstruction. Methods: Porcine tibias and bovine extensor tendons were used for establishing a knee model of ACL reconstruction in vitro . The ends of grafts were sutured using three different sutures, including the bioabsorbable, Ethibond and ultra high molecular weight polyethylene (UHMWPE) sutures Poly ether ether ketone (PEEK) interference screw s w ere used fortibial fixation Biomechanical tests were performed to investigate the protective effects of different sutures on grafts Results : All prepared tendons and bone specimens showed similar characteristics (length, weight, and pre tension of the tendons, tibial bone mineral density) among all groups ( P 0.05). The biomechanical test s demonstrated that PEEK interference screw s significantly caused the graft laceration P 0.05). However, all sutures (the bioabsorbable, Ethibond and UHMWPE sutures) did not reduce the graft laceration in ACL reconstruction P 0.05). Conclusions : PEEK interference screw s significantly weakened the biomechanical properties of grafts during tibial fixation in ACL reconstruction. Absorbable Ethibond and UHMWPE sutures did not provide protective effects on grafts during ACL reconstruction.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Xue Yang ◽  
Xinan Pan ◽  
Xiaorui Zhao ◽  
Jin Luo ◽  
Mingpu Xu ◽  
...  

Background. Autophagy is a catabolic process that depends on the lysosome. It is usually used to maintain cellular homeostasis, survival and development by degrading abnormal substances and dysfunctional organelles, especially when the cell is exposed to starvation or other stresses. Increasing studies have reported that autophagy is associated with various eye diseases, of which aging is one of the important factors. Objective. To summarize the functional and regulatory role of autophagy in ocular diseases with aging, and discuss the possibility of autophagy-targeted therapy in age-related diseases. Methods. PubMed searches were performed to identify relevant articles published mostly in the last 5 years. The key words were used to retrieve including “autophagy”, “aging”, “oxidative stress AND autophagy”, “dry eye AND autophagy”, “corneal disease AND autophagy”, “glaucoma AND autophagy”, “cataract AND autophagy”, “AMD AND autophagy”, “cardiovascular diseases AND autophagy”, “diabetes AND autophagy”. After being classified and assessed, the most relevant full texts in English were chosen. Results. Apart from review articles, more than two research articles for each age-related eye diseases related to autophagy were retrieved. We only included the most relevant and recent studies for summary and discussion. Conclusion. Autophagy has both protective and detrimental effects on the progress of age-related eye diseases. Different types of studies based on certain situations in vitro showed distinct results, which do not necessarily coincide with the actual situation in human bodies completely. It means the exact role and regulatory function of autophagy in ocular diseases remains largely unknown. Although autophagy as a potential therapeutic target has been proposed, many problems still need to be solved before it applies to clinical practice.


2020 ◽  
Vol 21 (3) ◽  
pp. 1021 ◽  
Author(s):  
Carlota Suárez-Barrio ◽  
Susana del Olmo-Aguado ◽  
Eva García-Pérez ◽  
María de la Fuente ◽  
Francisco Muruzabal ◽  
...  

Oxidative stress has a strong impact on the development of retinal diseases such as age-related macular degeneration (AMD). Plasma rich in growth factors (PRGF) is a novel therapeutic approach in ophthalmological pathologies. The aim of this study was to analyze the antioxidant effect of PRGF in retinal epithelial cells (EPR) in in vitro and ex vivo retinal phototoxicity models. In vitro analyses were performed on ARPE19 human cell line. Viability and mitochondrial status were assessed in order to test the primary effects of PRGF. GSH level, and protein and gene expression of the main antioxidant pathway (Keap1, Nrf2, GCL, HO-1, and NQO1) were also studied. Ex vivo analyses were performed on rat RPE, and HO-1 and Nrf2 gene and protein expression were evaluated. The results show that PRGF reduces light insult by stimulating the cell response against oxidative damage and modulates the antioxidant pathway. We conclude that PRGF’s protective effect could prove useful as a new therapy for treating neurodegenerative disorders such as AMD.


2015 ◽  
Vol 112 (32) ◽  
pp. 10038-10043 ◽  
Author(s):  
Noortje Ijssennagger ◽  
Clara Belzer ◽  
Guido J. Hooiveld ◽  
Jan Dekker ◽  
Saskia W. C. van Mil ◽  
...  

Colorectal cancer risk is associated with diets high in red meat. Heme, the pigment of red meat, induces cytotoxicity of colonic contents and elicits epithelial damage and compensatory hyperproliferation, leading to hyperplasia. Here we explore the possible causal role of the gut microbiota in heme-induced hyperproliferation. To this end, mice were fed a purified control or heme diet (0.5 μmol/g heme) with or without broad-spectrum antibiotics for 14 d. Heme-induced hyperproliferation was shown to depend on the presence of the gut microbiota, because hyperproliferation was completely eliminated by antibiotics, although heme-induced luminal cytotoxicity was sustained in these mice. Colon mucosa transcriptomics revealed that antibiotics block heme-induced differential expression of oncogenes, tumor suppressors, and cell turnover genes, implying that antibiotic treatment prevented the heme-dependent cytotoxic micelles to reach the epithelium. Our results indicate that this occurs because antibiotics reinforce the mucus barrier by eliminating sulfide-producing bacteria and mucin-degrading bacteria (e.g., Akkermansia). Sulfide potently reduces disulfide bonds and can drive mucin denaturation and microbial access to the mucus layer. This reduction results in formation of trisulfides that can be detected in vitro and in vivo. Therefore, trisulfides can serve as a novel marker of colonic mucolysis and thus as a proxy for mucus barrier reduction. In feces, antibiotics drastically decreased trisulfides but increased mucin polymers that can be lysed by sulfide. We conclude that the gut microbiota is required for heme-induced epithelial hyperproliferation and hyperplasia because of the capacity to reduce mucus barrier function.


2007 ◽  
Vol 292 (4) ◽  
pp. L924-L935 ◽  
Author(s):  
Anna A. Birukova ◽  
Panfeng Fu ◽  
Santipongse Chatchavalvanich ◽  
Dylan Burdette ◽  
Olga Oskolkova ◽  
...  

We have previously described protective effects of oxidized 1-palmitoyl-2-arachidonoyl- sn-glycero-3-phosphocholine (OxPAPC) on pulmonary endothelial cell (EC) barrier function and demonstrated the critical role of cyclopentenone-containing modifications of arachidonoyl moiety in OxPAPC protective effects. In this study we used oxidized phosphocholine (OxPAPC), phosphoserine (OxPAPS), and glycerophosphate (OxPAPA) to investigate the role of polar head groups in EC barrier-protective responses to oxidized phospholipids (OxPLs). OxPAPC and OxPAPS induced sustained barrier enhancement in pulmonary EC, whereas OxPAPA caused a transient protective response as judged by measurements of transendothelial electrical resistance (TER). Non-OxPLs showed no effects on TER levels. All three OxPLs caused enhancement of peripheral EC actin cytoskeleton. OxPAPC and OxPAPS completely abolished LPS-induced EC hyperpermeability in vitro, whereas OxPAPA showed only a partial protective effect. In vivo, intravenous injection of OxPAPS or OxPAPC (1.5 mg/kg) markedly attenuated increases in the protein content, cell counts, and myeloperoxidase activities detected in bronchoalveolar lavage fluid upon intratracheal LPS instillation in mice, although OxPAPC showed less potency. All three OxPLs partially attenuated EC barrier dysfunction induced by IL-6 and thrombin. Their protective effects against thrombin-induced EC barrier dysfunction were linked to the attenuation of the thrombin-induced Rho pathway of EC hyperpermeability and stimulation of Rac-mediated mechanisms of EC barrier recovery. These results demonstrate for the first time the essential role of polar OxPL groups in blunting the LPS-induced EC dysfunction in vitro and in vivo and suggest the mechanism of agonist-induced hyperpermeability attenuation by OxPLs via reduction of Rho and stimulation of Rac signaling.


2018 ◽  
Vol 46 (12) ◽  
pp. 2942-2953 ◽  
Author(s):  
Yoichi Murata ◽  
Soshi Uchida ◽  
Hajime Utsunomiya ◽  
Akihisa Hatakeyama ◽  
Hirotaka Nakashima ◽  
...  

Background: Several studies have shown the relationship between poorer clinical outcomes of arthroscopic femoroacetabular impingement syndrome surgery and focal chondral defects or global chondromalacia/osteoarthritis. Although recent studies described good outcomes after the conjunctive application of synovial mesenchymal stem cells (MSCs), none demonstrated the application of synovial MSCs for cartilaginous hip injuries. Purpose: To compare the characteristics of MSCs derived from the paralabral synovium and the cotyloid fossa synovium and determine which is the better source. Study Design: Controlled laboratory study. Methods: Synovium was harvested from 2 locations of the hip—paralabral and cotyloid fossa—from 18 donors. The number of cells, colony-forming units, viability, and differentiation capacities of adipose, bone, and cartilage were collected and compared between groups. In addition, real-time polymerase chain reaction was used to assess the differentiation capacity of adipose, bone, and cartilage tissue from both samples. Results: The number of colonies and yield obtained at passage 0 of synovium from the cotyloid fossa was significantly higher than that of the paralabral synovium ( P < .01). In adipogenesis experiments, the frequency of detecting oil red O–positive colonies was significantly higher in the cotyloid fossa than in the paralabral synovium ( P < .05). In osteogenesis experiments, the frequency of von Kossa and alkaline phosphatase positive colonies was higher in the cotyloid fossa synovium than in the paralabral synovium ( P < .05). In chondrogenic experiments, the chondrogenic pellet culture and the gene expressions of COL2a1 and SOX9 were higher in the cotyloid fossa synovium than in the paralabral synovium ( P < .05). Conclusion: MSCs from the cotyloid fossa synovium have higher proliferation and differentiation potential than do those from the paralabral synovium and are therefore a better source. Clinical Relevance: Synovial cells from the cotyloid fossa synovium of patients with femoroacetabular impingement syndrome are more robust in vitro, suggesting that MSCs from this source may be strongly considered for stem cell therapy.


2019 ◽  
Vol 10 (10) ◽  
Author(s):  
Wonbeak Yoo ◽  
Jaemin Lee ◽  
Kyung Hee Noh ◽  
Sangmin Lee ◽  
Dana Jung ◽  
...  

Abstract Progranulin (PGRN) is a cysteine-rich secreted protein expressed in endothelial cells, immune cells, neurons, and adipocytes. It was first identified for its growth factor-like properties, being implicated in tissue remodeling, development, inflammation, and protein homeostasis. However, these findings are controversial, and the role of PGRN in liver disease remains unknown. In the current study, we examined the effect of PGRN in two different models of chronic liver disease, methionine‐choline‐deficient diet (MCD)-induced non-alcoholic steatohepatitis (NASH) and carbon tetrachloride (CCl4)-induced liver fibrosis. To induce long-term expression of PGRN, PGRN-expressing adenovirus was delivered via injection into the tibialis anterior. In the CCl4-induced fibrosis model, PGRN showed protective effects against hepatic injury, inflammation, and fibrosis via inhibition of nuclear transcription factor kappa B (NF-κB) phosphorylation. PGRN also decreased lipid accumulation and inhibited pro-inflammatory cytokine production and fibrosis in the MCD-induced NASH model. In vitro treatment of primary macrophages and Raw 264.7 cells with conditioned media from hepatocytes pre-treated with PGRN prior to stimulation with tumor necrosis factor (TNF)-α or palmitate decreased their expression of pro-inflammatory genes. Furthermore, PGRN suppressed inflammatory and fibrotic gene expression in a cell culture model of hepatocyte injury and primary stellate cell activation. These observations increase our understanding of the role of PGRN in liver injury and suggest PGRN delivery as a potential therapeutic strategy in chronic inflammatory liver disease.


Sign in / Sign up

Export Citation Format

Share Document