scholarly journals Structural, FTIR, Optical and Dielectric Properties of Zn1-xAlxO Ceramics For Advanced Applications

Author(s):  
Ahmed Sedky ◽  
Atif Mossad Ali ◽  
H. Algarni

Abstract We report here the structural, FTIR, optical and dielectric properties of Zn1−xAlxO with x = 00.00 < x ≤ 0.20)). The wurtzite structure is conformed to all samples and the lattice constants, crystallite diameter, porosity and average crystalline size are generally decreased. The residual stress is compressive for pure samples, but it is changed to tensile for the doped samples. Interestingly, Debye temperature and elastic modulus are increased as x increases to 0.10, followed by a decrease at x = 0.20. Two different energy gaps Egh and Egl are apparent for each sample, corresponding of two transition absorption peaks. Interestingly, the ΔE = (Egh – Egl) ~ 0.60 for all samples. Further, the residual dielectric constant is decreased by increasing x to 0.10, followed by a sharp increase at x = 0.20 while the opposite behavior for (N/m*). The dielectric constant ε′ is slightly increased as x increases to 0.025, followed by a sharp increase as x increases to 0.20, as well as the ac conductivity σ/. The conduction is electronic for x ≤ 0.025 samples, but it is changed to hole with an increase of x to 0.20. The binding energy Wm was decreased as x increases to 0.20, but there is no exact trend against x for the behaviors of minimum hopping distance Rmin and density of localized states N. In addition, the density of states at Fermi level N (EF) has an optimum value at 195 KHz for all samples. The F-factor for solar cell design is increased as x increases to 0.10, but it is almost constant at x = 0.20. The Cole-Cole plot is a straight line for x = 0.00, a semicircle arc for x = 0.025 and a complete semicircle for x ≥ 0.05. The impedance resistance of grain Z\(g) and grain boundaries Z\(gb) are gradually decreased by increasing x to 0.20. These outcomes indicate that the addition of Al to ZnO shifts the mechanical, optical, and dielectric medium to higher values, which is strongly recommended for the design of optoelectronic and solar cell instruments.

2018 ◽  
Vol 08 (02) ◽  
pp. 1850010
Author(s):  
M. M. Altarawneh ◽  
G. A. Alharazneh ◽  
O. Y. Al-Madanat

In this work, we report the dielectric properties of Single wall Carbon Nanotubes (SWCNTs)-based phantom that is mainly composed of gelatin and water. The fabricated gelatin-based phantom with desired dielectric properties was fabricated and doped with different concentrations of SWCNTs (e.g., 0%, 0.05%, 0.10%, 0.15%, 0.2%, 0.4% and 0.6%). The dielectric constants (real [Formula: see text] and imaginary [Formula: see text] were measured at different positions for each sample as a function of frequency (0.5–20[Formula: see text]GHz) and concentrations of SWCNTs and their averages were found. The Cole–Cole plot ([Formula: see text] versus [Formula: see text] was obtained for each concentration of SWCNTs and was used to obtain the static dielectric constant [Formula: see text], the dielectric constant at the high limit of frequency [Formula: see text] and the average relaxation time [Formula: see text]. The measurements showed that the fabricated samples are in good homogeneity and the SWCNTs are dispersed well in the samples as an acceptable standard deviation is achieved. The study showed a linear increase in the static dielectric constant [Formula: see text] and invariance of the average relaxation time [Formula: see text] and the value of [Formula: see text] at room temperature for the investigated concentrations of SWCNTs.


2020 ◽  
Vol 16 ◽  
Author(s):  
Alliya Qamar ◽  
Rehana Zia ◽  
Madeeha Riaz

Background: Hydroxyapatite is similar to bone mineral in chemical composition, has good biocompatibility with host tissue and bone. Objective: This work aims to tailor the mechanical and dielectric properties of hydroxyapatite with zinc sudstitution, to improve wearability of implant and accelerate the healing process. Method: Pure and zinc incorporated hydroxyapatite Ca10(PO4)6(OH)2 samples have been successfully prepared by means of the chemical precipitation method. Results: The results showed that hydroxyapatite(Hap) having hexagonal structure was the major phase identified in all the samples. It was found that secondary phase of β-tricalcium phosphate (β-TCP) formed due to addition of Zinc resulting in biphasic structure BCP (Hap + β-TCP). A minor phase of ZnO also formed for higher concentration of Zn (Zn ≥ 2mol%) doping. It was found that the Zn incorporation to Hap enhanced both mechanical and dielectric properties without altering the bioactive properties. The microhardness increased upto 0.87 GPa for Zn concentration equal to 1.5mol%, which is comparable to the human bone ~0.3 - 0.9 GPa. The dielectric properties evaluated in the study showed that 1.5 mol% Zn doped hydroxyapatite had highest dielectric constant. Higher values of dielectric constant at low frequencies signifies its importance in healing processes and bone growth due to polarization of the material under the influence of electric field. Conclusion: Sample Z1.5 having 1.5 mol% Zn doping showed the most optimized properties suitable for bone regeneration applications.


Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2451
Author(s):  
Jianwen Zhang ◽  
Dongwei Wang ◽  
Lujia Wang ◽  
Wanwan Zuo ◽  
Lijun Zhou ◽  
...  

To study the effect of hyperbranched polyester with different kinds of terminal groups on the thermomechanical and dielectric properties of silica–epoxy resin composite, a molecular dynamics simulation method was utilized. Pure epoxy resin and four groups of silica–epoxy resin composites were established, where the silica surface was hydrogenated, grafted with silane coupling agents, and grafted with hyperbranched polyester with terminal carboxyl and terminal hydroxyl, respectively. Then the thermal conductivity, glass transition temperature, elastic modulus, dielectric constant, free volume fraction, mean square displacement, hydrogen bonds, and binding energy of the five models were calculated. The results showed that the hyperbranched polyester significantly improved the thermomechanical and dielectric properties of the silica–epoxy composites compared with other surface treatments, and the terminal groups had an obvious effect on the enhancement effect. Among them, epoxy composite modified by the hyperbranched polyester with terminal carboxy exhibited the best thermomechanical properties and lowest dielectric constant. Our analysis of the microstructure found that the two systems grafted with hyperbranched polyester had a smaller free volume fraction (FFV) and mean square displacement (MSD), and the larger number of hydrogen bonds and greater binding energy, indicating that weaker strength of molecular segments motion and stronger interfacial bonding between silica and epoxy resin matrix were the reasons for the enhancement of the thermomechanical and dielectric properties.


2015 ◽  
Vol 241 ◽  
pp. 226-236 ◽  
Author(s):  
Neha Solanki ◽  
Rajshree B. Jotania

Influence of Ca substitution on structural, magnetic and dielectric properties of Ba3Co2-xCaxFe24O41(where x = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0), prepared by Sol-Gel auto-combustion method, has been investigated in present studies. The obtained powder was sintered at 950 oC for 4 hrs. in the static air atmosphere. Structural analysis of Ca-doped Ba3Co2-xCaxFe24O41powders revealed pure Z-type hexaferrite phase at low temperature. The frequency dependent dielectric constant (Єʹ) and magnetic properties such as remanent magnetization (Mr), saturation magnetization (Ms) and coercivity (Hc) were studied. It is observed that coercivity increased gradually with increase in calcium content. The real dielectric constant (Єʹ) and dielectric loss tangent (tan δ) were studied in the frequency range of 20Hz to 2MHz. The dielectric parameters for all samples show normal dielectric behavior as observed in hexaferrites. Contents of Paper


2021 ◽  
pp. 096739112110147
Author(s):  
Ufuk Abaci ◽  
H Yuksel Guney ◽  
Mesut Yilmazoglu

The effect of plasticizer on dielectric properties of poly(methyl methacrylate) (PMMA)/titanium dioxide (TiO2) composites was investigated. Propylene carbonate (PC) was used as plasticizer in the samples which were prepared with the conventional solvent casting technique. Scanning Electron Microscopy with Energy Dispersive X-Ray Analysis (SEM-EDX) and Differential scanning calorimetry (DSC) analyses and LCR Meter measurements (performed between 300 K and 400 K), were conducted to examine the properties of the composites. With the addition of plasticizer, the thermal properties have changed and the dielectric constant of the composite has increased significantly. The glass transition temperature of pure PMMA measured 121.7°C and this value did not change significantly with the addition of TiO2, however, 112°C was measured in the sample with the addition 4 ml of PC. While the dielectric constant of pure PMMA was 3.64, the ε′ value increased to 5.66 with the addition of TiO2 and reached 12.6 with the addition of 4 ml PC. These changes have been attributed to increase in amorphous ratio that facilitates polymer dipolar and segmental mobility.


RSC Advances ◽  
2016 ◽  
Vol 6 (26) ◽  
pp. 21662-21671 ◽  
Author(s):  
Weibing Dong ◽  
Yue Guan ◽  
Dejing Shang

To acquire low dielectric constant polyimide films with good mechanical and thermal properties and low CTE applied in microelectronic fields, three novel polyimides containing pyridine and –C(CF3)2– groups were firstly designed and synthesized.


2011 ◽  
Vol 326 ◽  
pp. 127-130
Author(s):  
Xian Li Huang ◽  
Fu Ping Wang ◽  
Ying Song

In the present work, the microstructure and microwave dielectric properties of BaTi4O9 ceramics derived from a sol-gel precursor were presented. Density measuring results demonstrated that the largest densities of ceramic sample about 96.7% could be reached by virtue of a cool iso-static press and a sintering process at at 1300 °C for 6 hours. The dielectric constant (εr), quality factor (Q×f) and the temperature coefficients (τf) of the BaTi4O9 ceramic samples were 36.65, 28000 GHz, +20.2 ppm/°C, respectively. XRD, SEM and XPS were used to characterize the microstructure of the ceramics samples. Substantial Ti3+ was proposed to be the cause of dielectric loss.


2012 ◽  
Vol 557-559 ◽  
pp. 1152-1156
Author(s):  
Yan Zhou ◽  
Fu Wei Huang ◽  
Fa Rong Huang ◽  
Lei Du

Modified silicon-containing arylacetylene resins (DMSEPE-OMPS) were prepared from poly(dimethylsilyleneethynylenephenyleneethynylene) (DMSEPE) and Octa(maleimidophenyl)- silsesquioxane (OMPS). The curing reaction of DMSEPE-OMPS resin was studied by FT-IR and DSC techniques. Thermal stability and dielectric properties of cured DMSEPE-OMPS resins were determined. FT-IR and DSC analyses indicate that thermal polymerization of DMSEPE-OMPS resin occurs in the curing process. Thermal stabilities of cured DMSEPE-OMPS resins under N2 and air atmosphere decrease gradually with the increment of OMPS components. The incorporation of OMPS can obviously reduce dielectric constant of DMSEPE-OMPS resins.


2010 ◽  
Vol 105-106 ◽  
pp. 355-358 ◽  
Author(s):  
Z.L. Zhu ◽  
Dong Yan Tang ◽  
X.H. Zhang ◽  
Y.J. Qiao

To prevent the potential cracking of gel fibers, La modified lead zirconate titanate (PLZT) ceramic fibers with diameter within 50µm were achieved by embedding into PLZT powders during the heat treatment. Then the 1-3 PLZT fiber/interpenetrating polymer network (IPN) piezoelectric composites were prepared by casting the IPN precursors onto the well aligned ceramic fibers. The influences of the heating temperatures and La amounts on the dielectric constant, dielectric loss with frequencies and piezoelectric constant of PLZT were investigated in detail. The morphologies of fibers and composites were observed by biological microscope. And also, the dielectric constant of PLZT fibers and PLZT fiber/IPN piezoelectric composites were detected.


Sign in / Sign up

Export Citation Format

Share Document