scholarly journals Myogenic Progenitor Cell Transplantation for Muscle Regeneration Following Hindlimb Ischemia and Reperfusion 

Author(s):  
Franka Messner ◽  
Marco Thurner ◽  
Jule Müller ◽  
Michael Blumer ◽  
Julia Hofmann ◽  
...  

Abstract BackgroundMuscle is severely affected by ischemia/reperfusion injury (IRI). Quiescent satellite cells differentiating into myogenic progenitor cells (MPC) possess a remarkable regenerative potential. We herein established a model of local application of MPC in murine hindlimb ischemia/reperfusion to study cell engraftment and differentiation required for muscle regeneration.MethodsA clamping model of murine (C57b/6J) hindlimb ischemia was established to induce IRI in skeletal muscle. After 2 hours (h) warm ischemic time (WIT) and reperfusion, reporter protein expressing MPC (TdTomato or Luci-GFP, 1x106 cells) obtained from isolated satellite cells were injected intramuscularly. Surface marker expression and differentiation potential of MPC were analyzed in vitro by flow cytometry and differentiation assay. In vivo bioluminescence imaging and histopathologic evaluation of biopsies were performed to quantify cell fate, engraftment and regeneration.Results 2h WIT induced severe IRI on muscle, and muscle fiber regeneration as per histopathology within 14 days after injury. Bioluminescence in vivo imaging demonstrated reporter protein signals of MPC in 2h WIT animals and controls over the study period (75 days). Bioluminescence signals were detected at the injection site and increased over time. TdTomato expressing MPC and myofibers were visible in host tissue on postoperative days 2 and 14, respectively, suggesting that injected MPC differentiated into muscle fibers. Higher reporter protein signals were found after 2h WIT compared to controls without ischemia, indicative for enhanced growth and/or engraftment of MPC injected into IRI-affected muscle antagonizing muscle damage caused by IRI.ConclusionWIT-induced IRI in muscle requests increased numbers of injected MPC to engraft and persist, suggesting a possible rational for cell therapy to antagonize IRI. Further investigations are needed to evaluate the regenerative capacity and therapeutic advantage of MPC in the setting of ischemic limb injury.

2021 ◽  
Author(s):  
Franka Messner ◽  
Marco Thurner ◽  
Jule Müller ◽  
Michael Blumer ◽  
Julia Hofmann ◽  
...  

Abstract Background Muscle is severely affected by ischemia/reperfusion injury (IRI). Quiescent satellite cells differentiating into myogenic progenitor cells (MPC) possess a remarkable regenerative potential. We herein established a model of local application of MPC in murine hindlimb ischemia/reperfusion to study cell engraftment and differentiation required for muscle regeneration.Methods A clamping model of murine (C57b/6J) hindlimb ischemia was established to induce IRI in skeletal muscle. After 2 hours (h) warm ischemic time (WIT) and reperfusion, reporter protein expressing MPC (TdTomato or Luci-GFP, 1x106 cells) obtained from isolated satellite cells were injected intramuscularly. Surface marker expression and differentiation potential of MPC were analyzed in vitro by flow cytometry and differentiation assay. In vivo bioluminescence imaging and histopathologic evaluation of biopsies were performed to quantify cell fate, engraftment and regeneration.Results 2h WIT induced severe IRI on muscle, and muscle fiber regeneration as per histopathology within 14 days after injury. Bioluminescence in vivo imaging demonstrated reporter protein signals of MPC in 2h WIT animals and controls over the study period (75 days). Bioluminescence signals were detected at the injection site and increased over time. TdTomato expressing MPC and myofibers were visible in host tissue on postoperative days 2 and 14, respectively, suggesting that injected MPC differentiated into muscle fibers. Higher reporter protein signals were found after 2h WIT compared to controls without ischemia, indicative for enhanced growth and/or engraftment of MPC injected into IRI-affected muscle antagonizing muscle damage caused by IRI.Conclusion WIT-induced IRI in muscle requests increased numbers of injected MPC to engraft and persist, suggesting a possible rational for cell therapy to antagonize IRI. Further investigations are needed to evaluate the regenerative capacity and therapeutic advantage of MPC in the setting of ischemic limb injury.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Franka Messner ◽  
Marco Thurner ◽  
Jule Müller ◽  
Michael Blumer ◽  
Julia Hofmann ◽  
...  

Abstract Background Muscle is severely affected by ischemia/reperfusion injury (IRI). Quiescent satellite cells differentiating into myogenic progenitor cells (MPC) possess a remarkable regenerative potential. We herein established a model of local application of MPC in murine hindlimb ischemia/reperfusion to study cell engraftment and differentiation required for muscle regeneration. Methods A clamping model of murine (C57b/6 J) hindlimb ischemia was established to induce IRI in skeletal muscle. After 2 h (h) warm ischemic time (WIT) and reperfusion, reporter protein expressing MPC (TdTomato or Luci-GFP, 1 × 106 cells) obtained from isolated satellite cells were injected intramuscularly. Surface marker expression and differentiation potential of MPC were analyzed in vitro by flow cytometry and differentiation assay. In vivo bioluminescence imaging and histopathologic evaluation of biopsies were performed to quantify cell fate, engraftment and regeneration. Results 2h WIT induced severe IRI on muscle, and muscle fiber regeneration as per histopathology within 14 days after injury. Bioluminescence in vivo imaging demonstrated reporter protein signals of MPC in 2h WIT animals and controls over the study period (75 days). Bioluminescence signals were detected at the injection site and increased over time. TdTomato expressing MPC and myofibers were visible in host tissue on postoperative days 2 and 14, respectively, suggesting that injected MPC differentiated into muscle fibers. Higher reporter protein signals were found after 2h WIT compared to controls without ischemia, indicative for enhanced growth and/or engraftment of MPC injected into IRI-affected muscle antagonizing muscle damage caused by IRI. Conclusion WIT-induced IRI in muscle requests increased numbers of injected MPC to engraft and persist, suggesting a possible rational for cell therapy to antagonize IRI. Further investigations are needed to evaluate the regenerative capacity and therapeutic advantage of MPC in the setting of ischemic limb injury.


2021 ◽  
Vol 12 (5) ◽  
Author(s):  
Ying Dong Du ◽  
Wen Yuan Guo ◽  
Cong Hui Han ◽  
Ying Wang ◽  
Xiao Song Chen ◽  
...  

AbstractDespite N6-methyladenosine (m6A) is functionally important in various biological processes, its role and the underlying regulatory mechanism in the liver remain largely unexplored. In the present study, we showed that fat mass and obesity-associated protein (FTO, an m6A demethylase) was involved in mitochondrial function during hepatic ischemia–reperfusion injury (HIRI). We found that the expression of m6A demethylase FTO was decreased during HIRI. In contrast, the level of m6A methylated RNA was enhanced. Adeno-associated virus-mediated liver-specific overexpression of FTO (AAV8-TBG-FTO) ameliorated the HIRI, repressed the elevated level of m6A methylated RNA, and alleviated liver oxidative stress and mitochondrial fragmentation in vivo and in vitro. Moreover, dynamin-related protein 1 (Drp1) was a downstream target of FTO in the progression of HIRI. FTO contributed to the hepatic protective effect via demethylating the mRNA of Drp1 and impairing the Drp1-mediated mitochondrial fragmentation. Collectively, our findings demonstrated the functional importance of FTO-dependent hepatic m6A methylation during HIRI and provided valuable insights into the therapeutic mechanisms of FTO.


2021 ◽  
Vol 27 (1) ◽  
Author(s):  
Jian-Ping Zhang ◽  
Wei-Jing Zhang ◽  
Miao Yang ◽  
Hua Fang

Abstract Background Propofol, an intravenous anesthetic, was proven to protect against lung ischemia/reperfusion (I/R) injury. However, the detailed mechanism of Propofol in lung I/R injury is still elusive. This study was designed to explore the therapeutic effects of Propofol, both in vivo and in vitro, on lung I/R injury and the underlying mechanisms related to metastasis-associated lung adenocarcinoma transcript 1 (MALAT1)/microRNA-144 (miR-144)/glycogen synthase kinase-3β (GSK3β). Methods C57BL/6 mice were used to establish a lung I/R injury model while pulmonary microvascular endothelial cells (PMVECs) were constructed as hypoxia/reperfusion (H/R) cellular model, both of which were performed with Propofol treatment. Gain- or loss-of-function approaches were subsequently employed, followed by observation of cell apoptosis in lung tissues and evaluation of proliferative and apoptotic capabilities in H/R cells. Meanwhile, the inflammatory factors, autophagosomes, and autophagy-related proteins were measured. Results Our experimental data revealed that Propofol treatment could decrease the elevated expression of MALAT1 following I/R injury or H/R induction, indicating its protection against lung I/R injury. Additionally, overexpressing MALAT1 or GSK3β promoted the activation of autophagosomes, proinflammatory factor release, and cell apoptosis, suggesting that overexpressing MALAT1 or GSK3β may reverse the protective effects of Propofol against lung I/R injury. MALAT1 was identified to negatively regulate miR-144 to upregulate the GSK3β expression. Conclusion Overall, our study demonstrated that Propofol played a protective role in lung I/R injury by suppressing autophagy and decreasing release of inflammatory factors, with the possible involvement of the MALAT1/miR-144/GSK3β axis.


Human Cell ◽  
2021 ◽  
Author(s):  
Jiaying Zhu ◽  
Zhu Zhu ◽  
Yipin Ren ◽  
Yukang Dong ◽  
Yaqi Li ◽  
...  

AbstractLINGO-1 may be involved in the pathogenesis of cerebral ischemia. However, its biological function and underlying molecular mechanism in cerebral ischemia remain to be further defined. In our study, middle cerebral artery occlusion/reperfusion (MACO/R) mice model and HT22 cell oxygen–glucose deprivation/reperfusion (OGD/R) were established to simulate the pathological process of cerebral ischemia in vivo and in vitro and to detect the relevant mechanism. We found that LINGO-1 mRNA and protein were upregulated in mice and cell models. Down-regulation LINGO-1 improved the neurological symptoms and reduced pathological changes and the infarct size of the mice after MACO/R. In addition, LINGO-1 interference alleviated apoptosis and promoted cell proliferation in HT22 of OGD/R. Moreover, down-regulation of LINGO-1 proved to inhibit nuclear translocation of p-NF-κB and reduce the expression level of p-JAK2 and p-STAT3. In conclusion, our data suggest that shLINGO-1 attenuated ischemic injury by negatively regulating NF-KB and JAK2/STAT3 pathways, highlighting a novel therapeutic target for ischemic stroke.


2021 ◽  
Vol 22 (5) ◽  
pp. 2727
Author(s):  
Gertrude J. Nieuwenhuijs-Moeke ◽  
Dirk J. Bosch ◽  
Henri G.D. Leuvenink

Ischemia reperfusion injury (IRI) is inevitable in kidney transplantation and negatively impacts graft and patient outcome. Reperfusion takes place in the recipient and most of the injury following ischemia and reperfusion occurs during this reperfusion phase; therefore, the intra-operative period seems an attractive window of opportunity to modulate IRI and improve short- and potentially long-term graft outcome. Commonly used volatile anesthetics such as sevoflurane and isoflurane have been shown to interfere with many of the pathophysiological processes involved in the injurious cascade of IRI. Therefore, volatile anesthetic (VA) agents might be the preferred anesthetics used during the transplantation procedure. This review highlights the molecular and cellular protective points of engagement of VA shown in in vitro studies and in vivo animal experiments, and the potential translation of these results to the clinical setting of kidney transplantation.


2021 ◽  
Vol 10 (13) ◽  
pp. 2968
Author(s):  
Alessandro Bellis ◽  
Giuseppe Di Gioia ◽  
Ciro Mauro ◽  
Costantino Mancusi ◽  
Emanuele Barbato ◽  
...  

The significant reduction in ‘ischemic time’ through capillary diffusion of primary percutaneous intervention (pPCI) has rendered myocardial-ischemia reperfusion injury (MIRI) prevention a major issue in order to improve the prognosis of ST elevation myocardial infarction (STEMI) patients. In fact, while the ischemic damage increases with the severity and the duration of blood flow reduction, reperfusion injury reaches its maximum with a moderate amount of ischemic injury. MIRI leads to the development of post-STEMI left ventricular remodeling (post-STEMI LVR), thereby increasing the risk of arrhythmias and heart failure. Single pharmacological and mechanical interventions have shown some benefits, but have not satisfactorily reduced mortality. Therefore, a multitarget therapeutic strategy is needed, but no univocal indications have come from the clinical trials performed so far. On the basis of the results of the consistent clinical studies analyzed in this review, we try to design a randomized clinical trial aimed at evaluating the effects of a reasoned multitarget therapeutic strategy on the prevention of post-STEMI LVR. In fact, we believe that the correct timing of pharmacological and mechanical intervention application, according to their specific ability to interfere with survival pathways, may significantly reduce the incidence of post-STEMI LVR and thus improve patient prognosis.


2018 ◽  
Vol 102 ◽  
pp. S708
Author(s):  
Ivan Linares ◽  
Agata Bartczak ◽  
Kaveh Farrokhi ◽  
Dagmar Kollmann ◽  
Moritz Kaths ◽  
...  

2011 ◽  
Vol 32 (2) ◽  
pp. 242-247 ◽  
Author(s):  
Amy E B Packard ◽  
Jason C Hedges ◽  
Frances R Bahjat ◽  
Susan L Stevens ◽  
Michael J Conlin ◽  
...  

Preconditioning induces ischemic tolerance, which confers robust protection against ischemic damage. We show marked protection with polyinosinic polycytidylic acid (poly-IC) preconditioning in three models of murine ischemia-reperfusion injury. Poly-IC preconditioning induced protection against ischemia modeled in vitro in brain cortical cells and in vivo in models of brain ischemia and renal ischemia. Further, unlike other Toll-like receptor (TLR) ligands, which generally induce significant inflammatory responses, poly-IC elicits only modest systemic inflammation. Results show that poly-IC is a new powerful prophylactic treatment that offers promise as a clinical therapeutic strategy to minimize damage in patient populations at risk of ischemic injury.


Sign in / Sign up

Export Citation Format

Share Document