scholarly journals Electro-Absorption Modulation in GeSn Alloys for Wide-Spectrum Mid-Infrared Applications

Author(s):  
Yun-Da Hsieh ◽  
Jun-Han Lin ◽  
Richard Soref ◽  
Greg Sun ◽  
Hung-Hsiang Cheng ◽  
...  

Abstract Si-based electronic-photonic integrated circuits (EPICs), which are compatible with state-of-the-art complementary metal-oxide-semiconductor (CMOS) processes, offer promising opportunities for on-chip mid-infrared (MIR) photonic systems. However, the lack of efficient MIR optical modulators on Si hinders the utilization of MIR EPICs. Here, we clearly demonstrate the Franz-Keldysh (FK) effect in GeSn alloys and achieve on-Si MIR electro-absorption optical modulation using GeSn heterostructures. Our experimental and theoretical results verify that the direct bandgap energy of GeSn can be widely tuned by varying the Sn content, thereby realizing wavelength-tunable optical modulation in the MIR range with a figure-of-merit of Δα /α0 (FOM) greater than 1.5 and a broadband operating range greater than 140 nm. In contrast to conventional silicon-photonic modulators based on the plasma dispersion effect, our GeSn heterostructure demonstrates practical and effective FK MIR optical modulation on Si and helps unlock the potential of MIR EPICs for a wide range of applications.

2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Yun-Da Hsieh ◽  
Jun-Han Lin ◽  
Richard Soref ◽  
Greg Sun ◽  
Hung-Hsiang Cheng ◽  
...  

AbstractSilicon-based electronic-photonic integrated circuits, which are compatible with state-of-the-art complementary metal-oxide-semiconductor processes, offer promising opportunities for on-chip mid-infrared photonic systems. However, the lack of efficient mid-infrared optical modulators on silicon hinders the utilization of such systems. Here, we demonstrate the Franz-Keldysh effect in GeSn alloys and achieve mid-infrared electro-absorption optical modulation using GeSn heterostructures on silicon. Our experimental and theoretical results verify that the direct bandgap energy of GeSn can be widely tuned by varying the Sn content, thereby realizing wavelength-tunable optical modulation in the mid-infrared range with a figure-of-merit greater than 1.5 and a broadband operating range greater than 140 nm. In contrast to conventional silicon-photonic modulators based on the plasma dispersion effect, our GeSn heterostructure demonstrates practical and effective Franz-Keldysh mid-infrared optical modulation on silicon, helping to unlock the potential of electronic-photonic integrated circuits in a wide range of applications.


Author(s):  
Florent Torres ◽  
Eric Kerhervé ◽  
Andreia Cathelin ◽  
Magali De Matos

Abstract This paper presents a 31 GHz integrated power amplifier (PA) in 28 nm Fully Depleted Silicon-On-Insulator Complementary Metal Oxide Semiconductor (FD-SOI CMOS) technology and targeting SoC implementation for 5 G applications. Fine-grain wide range power control with more than 10 dB tuning range is enabled by body biasing feature while the design improves voltage standing wave ratio (VSWR) robustness, stability and reverse isolation by using optimized 90° hybrid couplers and capacitive neutralization on both stages. Maximum power gain of 32.6 dB, PAEmax of 25.5% and Psat of 17.9 dBm are measured while robustness to industrial temperature range and process spread is demonstrated. Temperature-induced performance variation compensation, as well as amplitude-to-phase modulation (AM-PM) optimization regarding output power back-off, are achieved through body-bias node. This PA exhibits an International Technology Roadmap for Semiconductors figure of merit (ITRS FOM) of 26 925, the highest reported around 30 GHz to authors' knowledge.


Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Feiying Sun ◽  
Changbin Nie ◽  
Xingzhan Wei ◽  
Hu Mao ◽  
Yupeng Zhang ◽  
...  

Abstract Two-dimensional (2D) materials with excellent optical properties and complementary metal-oxide-semiconductor (CMOS) compatibility have promising application prospects for developing highly efficient, small-scale all-optical modulators. However, due to the weak nonlinear light-material interaction, high power density and large contact area are usually required, resulting in low light modulation efficiency. In addition, the use of such large-band-gap materials limits the modulation wavelength. In this study, we propose an all-optical modulator integrated Si waveguide and single-layer MoS2 with a plasmonic nanoslit, wherein modulation and signal light beams are converted into plasmon through nanoslit confinement and together are strongly coupled to 2D MoS2. This enables MoS2 to absorb signal light with photon energies less than the bandgap, thereby achieving high-efficiency amplitude modulation at 1550 nm. As a result, the modulation efficiency of the device is up to 0.41 dB μm−1, and the effective size is only 9.7 µm. Compared with other 2D material-based all-optical modulators, this fabricated device exhibits excellent light modulation efficiency with a micron-level size, which is potential in small-scale optical modulators and chip-integration applications. Moreover, the MoS2-plasmonic nanoslit modulator also provides an opportunity for TMDs in the application of infrared optoelectronics.


2014 ◽  
Vol 13 (02) ◽  
pp. 1450012 ◽  
Author(s):  
Manorama Chauhan ◽  
Ravindra Singh Kushwah ◽  
Pavan Shrivastava ◽  
Shyam Akashe

In the world of Integrated Circuits, complementary metal–oxide–semiconductor (CMOS) has lost its ability during scaling beyond 50 nm. Scaling causes severe short channel effects (SCEs) which are difficult to suppress. FinFET devices undertake to replace usual Metal Oxide Semiconductor Field Effect Transistor (MOSFETs) because of their better ability in controlling leakage and diminishing SCEs while delivering a strong drive current. In this paper, we present a relative examination of FinFET with the double gate MOSFET (DGMOSFET) and conventional bulk Si single gate MOSFET (SGMOSFET) by using Cadence Virtuoso simulation tool. Physics-based numerical two-dimensional simulation results for FinFET device, circuit power is presented, and classifying that FinFET technology is an ideal applicant for low power applications. Exclusive FinFET device features resulting from gate–gate coupling are conversed and efficiently exploited for optimal low leakage device design. Design trade-off for FinFET power and performance are suggested for low power and high performance applications. Whole power consumptions of static and dynamic circuits and latches for FinFET device, believing state dependency, show that leakage currents for FinFET circuits are reduced by a factor of over ~ 10X, compared to DGMOSFET and ~ 20X compared with SGMOSFET.


1987 ◽  
Vol 96 (1_suppl) ◽  
pp. 76-79
Author(s):  
J. Génin ◽  
R. Charachon

In a multichannel cochlear prosthesis, electrical interactions between electrodes impose severe limitations on dynamic range and selectivity. We present a theoretical model to cope with these limitations. Building a successful cochlear implant requires full custom-integrated circuits. We present the design of such a device, implemented in complementary metal oxide semiconductor technology. The area of the chip is 9 mm2 and it can stimulate 15 cochlear electrodes with current impulses.


Nanophotonics ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 467-474 ◽  
Author(s):  
Wenhao Wu ◽  
Yu Yu ◽  
Wei Liu ◽  
Xinliang Zhang

AbstractPolarization measurement has been widely used in material characterization, medical diagnosis and remote sensing. However, existing commercial polarization analyzers are either bulky schemes or operate in non-real time. Recently, various polarization analyzers have been reported using metal metasurface structures, which require elaborate fabrication and additional detection devices. In this paper, a compact and fully integrated silicon polarization analyzer with a photonic crystal-like metastructure for polarization manipulation and four subsequent on-chip photodetectors for light-current conversion is proposed and demonstrated. The input polarization state can be retrieved instantly by calculating four output photocurrents. The proposed polarization analyzer is complementary metal oxide semiconductor-compatible, making it possible for mass production and easy integration with other silicon-based devices monolithically. Experimental verification is also performed for comparison with a commercial polarization analyzer, and deviations of the measured polarization angle are <±1.2%.


Biosensors ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 77 ◽  
Author(s):  
Honeyeh Matbaechi Ettehad ◽  
Rahul Kumar Yadav ◽  
Subhajit Guha ◽  
Christian Wenger

Dielectrophoresis (DEP) is a nondestructive and noninvasive method which is favorable for point-of-care medical diagnostic tests. This technique exhibits prominent relevance in a wide range of medical applications wherein the miniaturized platform for manipulation (immobilization, separation or rotation), and detection of biological particles (cells or molecules) can be conducted. DEP can be performed using advanced planar technologies, such as complementary metal-oxide-semiconductor (CMOS) through interdigitated capacitive biosensors. The dielectrophoretically immobilization of micron and submicron size particles using interdigitated electrode (IDE) arrays is studied by finite element simulations. The CMOS compatible IDEs have been placed into the silicon microfluidic channel. A rigorous study of the DEP force actuation, the IDE’s geometrical structure, and the fluid dynamics are crucial for enabling the complete platform for CMOS integrated microfluidics and detection of micron and submicron-sized particle ranges. The design of the IDEs is performed by robust finite element analyses to avoid time-consuming and costly fabrication processes. To analyze the preliminary microfluidic test vehicle, simulations were first performed with non-biological particles. To produce DEP force, an AC field in the range of 1 to 5 V (peak-to-peak) is applied to the IDE. The impact of the effective external and internal properties, such as actuating DEP frequency and voltage, fluid flow velocity, and IDE’s geometrical parameters are investigated. The IDE based system will be used to immobilize and sense particles simultaneously while flowing through the microfluidic channel. The sensed particles will be detected using the capacitive sensing feature of the biosensor. The sensing and detecting of the particles are not in the scope of this paper and will be described in details elsewhere. However, to provide a complete overview of this system, the working principles of the sensor, the readout detection circuit, and the integration process of the silicon microfluidic channel are briefly discussed.


Sign in / Sign up

Export Citation Format

Share Document