scholarly journals Metformin Sensitizes Osteosarcoma Cells to Chemotherapy Through IGF-1R/miR-610/FEN1 Pathway

Author(s):  
Suwei Dong ◽  
Yanbin Xiao ◽  
Ziqiang Zhu ◽  
Xiang Ma ◽  
Zhuohui Peng ◽  
...  

Abstract Background: Due to constitutive or acquired non-sensitive to cytotoxic agents, the prognosis of osteosarcoma remains unfavorable. It’s has been proved that metformin could enhance the chemosensitivity of cancer cells to anticancer drugs. A novel finding states that IGF-1R involves in cancer chemoresistance, However, whether IGF-1R play a role in metformin-induced osteosarcoma chemosensitivity is incompletely understood. Hence, the current study aimed to elucidate the role of metformin in OS cell chemosensitivity modulation to identify the underlying mechanism of metformin regulating the IGF-1R/miR-610/FEN1 signaling.Methods: Immunohistochemistry and qRT-PCR were used to evaluate the expression pattern of IGF-1R, miR-610 and FEN1 in osteosarcoma and paired normal tissues. Western blot and qRT-PCR were performed to determine changes in expression of key molecules in the IGF-1R/miR-610/FEN1 signaling pathway after various treatments. The direct modulation between miR-610 and FEN1 was monitored by luciferase reporter assay. Osteosarcoma cell sensitivity to chemotherapy was detected by MTS assay. In vivo experiments were conducted to further verify the role of the metformin in the chemosensitivity modulation of OS cells to ADM.Results: We found that IGF-1R, miR-610 and FEN1 were abberently expressed in osteosarcoma, and participated in apoptosis modulation (p < 0.05). We found that this effect was abated by metformin treatment. Luciferase reporter assays confirmed that FEN1 is a direct target of miR-610. Moreover, we observed that metformin treatment decreased IGF-1R and FEN1, but elevated miR-610 expression. Metformin sensitized OS cells to cytotoxic agents, while overexpression of FEN1 compromised the sensitizing effects of metformin partly. Furthermore, metformin was observed to enforce the ADM treatment effect in nude mice xenograft models.Conclusions: Overall, metformin enhanced the sensitivity of OS cells to cytotoxic agents via the IGF-1R/miR-610/FEN1 signaling axis, highlighting the capacity of metformin as an adjunct to the chemotherapy of OS.

2020 ◽  
Vol 40 (4) ◽  
Author(s):  
Lei Liu ◽  
Yuexiang Yan ◽  
Guanyu Zhang ◽  
Chengxue Chen ◽  
Weihong Shen ◽  
...  

Abstract Purpose: The indispensable role of long non-coding RNAs (lncRNAs) in tumorigenesis has been increasingly reported. In the present study, LINC01694 was found to regulate the proliferation, invasion, as well as apoptosis in gallbladder cancer (GBC) cells through sponging miR-340-5p. Methods: LINC01694 level in GBC cells was quantified by quantitative real-time polymerase chain reaction (qRT-PCR). The proliferation, invasion, and apoptosis were determined by Cell Counting Kit-8 (CCK-8), Transwell, and flow cytometry, respectively. The expression of Sry-related high-mobility group box 4 (Sox4) was detected by Western blot (WB). The interaction between LINC01694 and miR-340-5p was measured by dual-luciferase reporter (DLR) assay, RNA immunoprecipitation (RIP) test, and RNA pull-down. Tumor formation was examined by in vivo experiment. Results: qRT-PCR illustrated that cancerous tissues had higher LINC01694 than normal tissues. Survival analysis demonstrated that the prognosis of patients with high LINC01694 was significantly poorer than those with low LINC01694. Down-regulation of LINC01694 slowed down the proliferation and invasion in GBC cells and accelerated the apoptosis. DLR assay indicated that LINC01694 elevated Sox4 expression by regulating miR-340-5p. LINC01694 functioned as miR-340-5p sponge to inhibit Sox4 expression. Conclusion: LINC01694 level is elevated in GBC by regulating miR-340-5p/Sox4 axis, which indicates the poor prognosis of the patients.


2018 ◽  
Vol 51 (3) ◽  
pp. 1364-1375 ◽  
Author(s):  
Dan Fei ◽  
Xiaona Zhang ◽  
Jinxiang Liu ◽  
Long Tan ◽  
Jie Xing ◽  
...  

Background/Aims: Novel long non-coding RNA Fer-1-like protein 4 (FER1L4) has been reported to play crucial regulatory roles in tumor progression. However, its clinical significance and biological role in osteosarcoma (OS) is completely unknown. The aim of the present study was to investigate the role of FER1L4 in OS progression and the underlying mechanism. Methods: We analyzed the expression levels of FER1L4 in tissues of OS patients and cell lines via quantitative RT-PCR (qRT-PCR). The effect of FER1L4 on cell proliferation, colony formation, migration and invasion was analyzed by cell counting kit-8 (CCK-8), colony formation, wound healing and transwell invasion assay, respectively. Novel targets of FER1L4 were selected through a bioinformatics soft and confirmed using a dual-luciferase reporter system and qRT-PCR. To detect the role of FER1L4 in vivo tumorigenesis, tumor xenografts were created. Results: We found that the expression of FER1L4 was significantly downregulated in OS tissues and cell lines; moreover, low expression of FER1L4 was associated with advanced tumor-nude-metastasis (TNM) stage, lymph node metastases, and poor overall survival. Functional assays showed that upregulation of FER1L4 significantly inhibited OS cell proliferation, colony formation, migration, and invasion in vitro, as well as suppressed tumor growth in vivo. Assays performed to determine the underlying mechanism, indicated that FER1L4 interacted directly with miR-18a-5p. Subsequently, we found that FER1L4 significantly increased PTEN expression, a known target of miR-18a-5p, in OS cells. Furthermore, PTEN was found to be down-regulated, and positively correlated with FER1L4 in OS tissues. Conclusion: These findings suggest that FER1L4, acting as a competing endogenous RNA (ceRNA) of miR-18a-5p, exerts its anti-cancer role by modulating the expression of PTEN. Thus, FER1L4 may be a novel target for the prevention and treatment of OS.


2020 ◽  
Author(s):  
Zhu Jin ◽  
Yutong Chen ◽  
Yuchen Mao ◽  
Mingjuan Gao ◽  
Zebing Zheng ◽  
...  

Abstract Background: microRNAs have been studied widely in hepatoblastoma. However, the role of miR-125b-5p and its relationship with the lncRNA sNEAT1 and YES1 in hepatoblastoma have not been reported previously. We aimed to reveal the role of NEAT1/miR-125b-5p/YES1 in the progression of hepatoblastoma.Methods: We collected tumor tissues and their adjacent tissues from 12 hepatoblastoma patients. qRT-PCR was applied to detect the expression of miR-125b-5p, and the relationship of miR-125b-5p with clinicopathological characteristics was analyzed. Dual luciferase reporter assays and RNA pull down assays were used to identify the relationships among NEAT1, miR-125b-5p and YES1. CCK8, Transwell assays and wound healing assays were used to examine cell viability, invasion and migration. In vivo experiments were also applied to detect the effect of miR-125b-5p on hepatoblastoma.Results: miR-125b-5p was significantly downregulated in hepatoblastoma tissue and cells. The higher the PRETEXT grade, the lower the miR-125b-5p level. NEAT1 could bind to miR-125b-5p and inhibit its expression. miR-125b-5p could target YES1 and inhibit its expression. Overexpression of miR-125b-5p decreased the proliferation, invasion, and migratory ability of hepatoblastoma cells. YES1 could rescue the above effects. At the same time, overexpression of miR-125b-5p resulted in decreased YES1 and tumor growth inhibition in vivo.Conclusion: miR-125b-5p acted as a shared miRNA of NEAT1 and YES1 in hepatoblastoma. Overexpression of miR-125b-5p could target YES1 and inhibit its expression, therefore inhibiting the progression of hepatoblastoma.


2016 ◽  
Vol 38 (2) ◽  
pp. 777-785 ◽  
Author(s):  
Jian-Jun Sun ◽  
Guo-Yong Chen ◽  
Zhan-Tao Xie

Background/Aims: A growing body of evidence supports the notion that MicroRNAs (miRNAs) function as key regulators of tumorigenesis. In the present study, the expression and roles of miRNA-361-5p were explored in hepatocellular carcinoma (HCC). Methods: Quantitative real-time PCR was used to detect the expression miR-361-5p in HCC tissues and pair-matched adjacent normal tissues. MTT and BrdU assays were used to identify the role of miR-361-5p in the regulation of proliferation and invasion of HCC cells. Using bioinformatics analysis, luciferase reporter assays and Western blots were used to identify the molecular target of miR-361-5p. nude mice were used to detect the anti-tumor role of miR-361-5p in vivo. Results: miR-361-5p was down-regulated in HCC tissues in comparison to adjacent normal tissues, due to hypermethylation at its promoter region. Overexpression of miR-361-5p suppressed proliferation and invasion of HCC cells. Chemokine (C-X-C Motif) receptor 6 (CXCR6) was identified as a target of miR-361-5p. Indeed, knockdown of CXCR6 photocopied, while overexpression of CXCR6 largely attenuated the anti-proliferative effect of miR-361-5p. More importantly, in vivo studies demonstrated that forced expression of miR-361-5p significantly inhibited tumor growth in the nude mice. Conclusion: Our results indicate that miR-361-5p acts as a tumor suppressor and might serve as a novel therapeutic target for the treatment of HCC patients.


Author(s):  
Xuhui Fan ◽  
Meng Liu ◽  
Li Fei ◽  
Zhihui Huang ◽  
Yufeng Yan

Circular RNA (circRNA) is a key regulator of tumor progression. However, the role of circFOXM1 in glioblastoma (GBM) progression is unclear. The aim of this study was to investigate the role of circFOXM1 in GBM progression. The expression levels of circFOXM1, miR-577 and E2F transcription factor 5 (E2F5) were examined by real-time quantitative PCR. Cell counting kit 8 assay, EdU staining and transwell assay were used to detect cell proliferation, migration, and invasion. The levels of glutamine, glutamate and α-ketoglutarate were determined to evaluate the glutaminolysis ability of cells. Protein expression was tested by western blot analysis. Dual-luciferase reporter assay, RNA pull-down assay and RNA immunoprecipitation assay were employed to verify the interaction between miR-577 and circFOXM1 or E2F5. Mice xenograft model for GBM was constructed to perform in vivo experiments. Our results showed that circFOXM1 was highly expressed in GBM tumor tissues and cells. Silencing of circFOXM1 inhibited GBM cell proliferation, migration, invasion, glutaminolysis, as well as tumor growth. MiR-577 could be sponged by circFOXM1, and its inhibitor could reverse the suppressive effect of circFOXM1 downregulation on GBM progression. E2F5 was a target of miR-577, and the effect of its knockdown on GBM progression was consistent with that of circFOXM1 silencing. CircFOXM1 positively regulated E2F5 expression, while miR-577 negatively regulated E2F5 expression. In conclusion, our data confirmed that circFOXM1 could serve as a sponge of miR-577 to enhance the progression of GBM by targeting E2F5, which revealed that circFOXM1 might be a biomarker for GBM treatment.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Bo Sun ◽  
Xianyu Zheng ◽  
Weilong Ye ◽  
Pengcheng Zhao ◽  
Guowu Ma

Objectives. The aim of this research was to uncover the biological role and mechanisms of LINC01303 in oral squamous cell carcinoma (OSCC). Materials and Methods. Real-time quantitative PCR (qRT-PCR) was used to determine LINC01303 expression in OSCC tissues. Subcellular distribution of LINC01303 was examined by nuclear/cytoplasmic RNA fractionation and FISH experiments. The role of LINC01303 in the growth of TSCCA and SCC-25 was examined by CCK-8 assay, colony formation, transwell invasion assay in vitro, and xenograft tumor experiment in vivo. Dual-luciferase reporter assay was used to verify the interaction between LINC01303 and miR-429. RNA pull‐down assay was used to discover miR-429‐interacted protein, which was further examined by qRT-PCR, western blot, and rescue experiments. Results. LINC01303 expression was higher in OSCC tissues compared with adjacent nontumor tissues. LINC01303 was found to be localized in the cytoplasm of OSCC cells. Knockdown of LINC01303 inhibited OSCC cell proliferation and invasion, whereas increasing the expression of LINC01303 showed the opposite effects. Furthermore, LINC01303 served as a miR-429 “sponge” and positively regulated ZEB1 expression. Moreover, LINC01303 promoted OSCC through miR-429/ZEB1 axis both in vivo and in vitro. Conclusions. LINC01303 plays an oncogenic role in OSCC and is a promising biomarker for OSCC patients.


2015 ◽  
Vol 37 (3) ◽  
pp. 1044-1054 ◽  
Author(s):  
Hong-tao Li ◽  
Hui Zhang ◽  
Yong Chen ◽  
Xian-fu Liu ◽  
Jun Qian

Background/Aims: Colorectal cancer (CRC) is one of the leading causes of cancer-related deaths globally, with many oncogenes and tumor suppressors involved. The miRNAs are small non-coding RNAs known to play a vital role in the pathogenesis of CRC. The miR-423-3p was reported to act as an oncogene; however, its role in CRC growth remains unknown. Methods: qPCR assay was used to detect miR-423-3p expression in CRC specimens. Cell proliferation assay and transwell assay were conducted to evaluate CRC cell proliferation and migration. Luciferase reporter assay was to identify the target gene of miR-423-3p. And tumorigenesis model was established to test the role of miR-423-3p in CRC development in vivo. Results: Here, we showed that miR-423-3p was significantly up regulated in CRC tissues and cells compared with normal tissues and cells. Overexpression of miR-423-3p promoted CRC cell proliferation via enhancing the G1/S transition phase of the cell cycle, while inhibition of miR-423-3p repressed cell growth. Further studies showed that p21Cip1/Waf1 mediated the function of miR-423-3p, and overexpression of p21Cip1/Waf1 reversed the augmented effect of miR-423-3p on cell proliferation. Importantly, all these data were validated in the tumorigenesis assay in vivo. Conclusions: In conclusion, our findings demonstrated a critical impact of miR-423-3p on CRC growth.


2017 ◽  
Vol 59 (2) ◽  
pp. 181-190 ◽  
Author(s):  
Dong Zhao ◽  
Jinhua Jia ◽  
Hong Shao

The objectives of this study are to investigate the effect of miR-30e targeting GLIPR-2 on the pathological mechanism of DN. The renal tissues of db/db and db/m mice at different age of weeks were stained with PAS. qRT-PCR was applied to detect the expression of miR-30e and GLIPR-2, not only in the renal tissues of mice but also in the renal tubular epithelial cells (RTECs). By luciferase reporter gene assays, we found the 3′-UTR of the GLIPR-2 mRNA as a direct target of miR-30e. The RTECs cultured in high glucose were divided into blank control, NC, miR-30e mimics, miR-30e inhibitors, miR-30e inhibitor + si-GLIPR-2 and si-GLIPR-2 groups. MTT and flow cytometry were utilized to measure the proliferation and apoptosis of RTECs, while qRT-PCR and Western blot to detect the expression of GLIPR-2- and EMT-related factors. The following results were obtained: In the renal tissues of over 8-week-old db/db mice and the RTECs cultured for 6 h in high glucose, miR-30e was downexpressed while GLIPR-2 was upregulated in a time-dependent manner. Besides, overexpression of miR-30e and si-GLIPR-2 can not only greatly improve the proliferation of RTECs cultured in high glucose, but also downregulate the apoptosis rate of RTECs and the expressions of GLIPR-2, vimentin, α-SMA, Col-I and FN and upregulate E-cadherin. Moreover, si-GLIPR-2 can reverse the proliferation reduction, GLIPR-2 and EMT occurrence caused by the downexpression of miR-30e in RTECs. In conclusion, miR-30e is downregulated in DN, and the overexpression of miR-30e can inhibit GLIPR-2, promote the proliferation of RTECs and inhibit EMT, ultimately avoid leading to renal fibrosis in DN.


2019 ◽  
Vol 18 (1) ◽  
Author(s):  
Ben Yue ◽  
Chenlong Song ◽  
Linxi Yang ◽  
Ran Cui ◽  
Xingwang Cheng ◽  
...  

Abstract Background As one of the most frequent chemical modifications in eukaryotic mRNAs, N6-methyladenosine (m6A) modification exerts important effects on mRNA stability, splicing, and translation. Recently, the regulatory role of m6A in tumorigenesis has been increasingly recognized. However, dysregulation of m6A and its functions in tumor epithelial-mesenchymal transition (EMT) and metastasis remain obscure. Methods qRT-PCR and immunohistochemistry were used to evaluate the expression of methyltransferase-like 3 (METTL3) in gastric cancer (GC). The effects of METTL3 on GC metastasis were investigated through in vitro and in vivo assays. The mechanism of METTL3 action was explored through transcriptome-sequencing, m6A-sequencing, m6A methylated RNA immunoprecipitation quantitative reverse transcription polymerase chain reaction (MeRIP qRT-PCR), confocal immunofluorescent assay, luciferase reporter assay, co-immunoprecipitation, RNA immunoprecipitation and chromatin immunoprecipitation assay. Results Here, we show that METTL3, a major RNA N6-adenosine methyltransferase, was upregulated in GC. Clinically, elevated METTL3 level was predictive of poor prognosis. Functionally, we found that METTL3 was required for the EMT process in vitro and for metastasis in vivo. Mechanistically, we unveiled the METTL3-mediated m6A modification profile in GC cells for the first time and identified zinc finger MYM-type containing 1 (ZMYM1) as a bona fide m6A target of METTL3. The m6A modification of ZMYM1 mRNA by METTL3 enhanced its stability relying on the “reader” protein HuR (also known as ELAVL1) dependent pathway. In addition, ZMYM1 bound to and mediated the repression of E-cadherin promoter by recruiting the CtBP/LSD1/CoREST complex, thus facilitating the EMT program and metastasis. Conclusions Collectively, our findings indicate the critical role of m6A modification in GC and uncover METTL3/ZMYM1/E-cadherin signaling as a potential therapeutic target in anti-metastatic strategy against GC.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Yixiang Huang ◽  
Wenfang Zheng ◽  
Changle Ji ◽  
Xuehui Wang ◽  
Yunhe Yu ◽  
...  

AbstractBreast cancer (BC) is one of the most fatal diseases among women all over the world. Non-coding RNAs including circular RNAs (circRNAs) have been reported to be involved in different aspects during tumorigenesis and progression. In this study, we aimed to explore the biological functions and underlying mechanism of circRPPH1 in BC. Candidate circRNAs were screened in dataset GSE101123 from Gene Expression Omnibus (GEO) database and a differentially expressed circRNA, circRPPH1, was discovered in BC. CircRPPH1 expression was higher in the cancerous tissue compared to paired adjacent tissue. Further in vitro and in vivo experiments indicated that circRPPH1 acted as an oncogene in BC. In addition, circRPPH1 was mainly localized in cytoplasm and played the role of miR-512-5p sponge. By sequestering miR-512-5p from the 3′-UTR of STAT1, circRPPH1 inhibited the suppressive role of miR-512-5p, stabilized STAT1 mRNA in BC and finally affected BC progression. In conclusion, these findings indicated that circRPPH1 acted as an oncogene and regulated BC progression via circRPPH1-miR-512-5p-STAT1 axis, which might provide a potential therapeutic target for BC treatment.


Sign in / Sign up

Export Citation Format

Share Document